Saltar para o conteúdo

Triângulo de Sierpinski: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
Colaborador Z (discussão | contribs)
m Revertidas edições por 189.72.104.104 para a última versão por Bomba Z (usando Huggle)
Linha 2: Linha 2:
O '''Triângulo de Sierpinski''' é uma figura [[Geometria|geométrica]] obtida através de um processo recursivo. Ele é uma das formas elementares da geometria [[fractal]] por apresentar algumas propriedades, tais como: ter tantos pontos como o do conjunto dos números reais; ter área igual a zero; ser auto-semelhante (uma sua parte é idêntica ao todo); não perder a sua definição inicial à medida que é ampliado. Foi primeiramente descrito por [[Waclaw Sierpinski]] (1882 - 1969), matemático polonês.
O '''Triângulo de Sierpinski''' é uma figura [[Geometria|geométrica]] obtida através de um processo recursivo. Ele é uma das formas elementares da geometria [[fractal]] por apresentar algumas propriedades, tais como: ter tantos pontos como o do conjunto dos números reais; ter área igual a zero; ser auto-semelhante (uma sua parte é idêntica ao todo); não perder a sua definição inicial à medida que é ampliado. Foi primeiramente descrito por [[Waclaw Sierpinski]] (1882 - 1969), matemático polonês.


== Construção ==mas conforme o número de iterações aumenta, a imagem obtida tende a se tornar cada vez mais parecida com o fractal.
== Construção ==

Uma das maneiras de se obter um triângulo de Sierpinski é através do seguinte [[algoritmo]]:
# Comece com qualquer triângulo em um plano. O triângulo de Sierpinski [[canônico]] utilizava um [[triângulo equilátero]] com a base paralela ao eixo horizontal, mas qualquer triângulo pode ser usado (ver primeira figura).
# Encolha o triângulo pela metade (cada lado deve ter metade do tamanho original), faça três copias, e posicione cada triângulo de maneira que encoste nos outros dois em um canto (ver segunda figura).
# Repita o passo 2 para cada figura obtida, indefinidamente (ver a partir da terceira figura).
:[[Ficheiro:Sierpinsky triangle (evolution).png|512px|The evolution of the Sierpinski triangle]]

Embora no processo acima a figura inicial seja um triângulo, não é necessário partir de um para se chegar no triângulo de Sierpinski. É possível utilizar qualquer figura geométrica (ver abaixo), o triângulo só é utilizado por facilitar a visualização.

:[[Ficheiro:Sierp.png|604px|Iterating from a square]]

O fractal propriamente dito só é obtido quando o processo do algoritmo é repetido infinitas vezes, mas conforme o número de iterações aumenta, a imagem obtida tende a se tornar cada vez mais parecida com o fractal.


== Propriedades ==
== Propriedades ==

Revisão das 17h56min de 16 de abril de 2012

Triângulo de Sierpinski

O Triângulo de Sierpinski é uma figura geométrica obtida através de um processo recursivo. Ele é uma das formas elementares da geometria fractal por apresentar algumas propriedades, tais como: ter tantos pontos como o do conjunto dos números reais; ter área igual a zero; ser auto-semelhante (uma sua parte é idêntica ao todo); não perder a sua definição inicial à medida que é ampliado. Foi primeiramente descrito por Waclaw Sierpinski (1882 - 1969), matemático polonês.

== Construção ==mas conforme o número de iterações aumenta, a imagem obtida tende a se tornar cada vez mais parecida com o fractal.

Propriedades

O triângulo de Sierpinski possui uma dimensão de Hausdorff de log(3)/log(2) (aproximadamente 1,585). Isso acontece porque essa é uma figura formada por três cópias de si mesma, cada uma reduzida por um fator de 1/2.

Também existe uma relação com o triângulo de Pascal. Montando o triângulo de Pascal com 2n linhas, e pintando os números pares de branco e os ímpares de preto, a figura obtida será uma aproximação do triângulo de Sierpinski.

A área de um triângulo de Sierpinski é zero. Isso pode ser percebido quando observamos que, a cada iteração, a área da figura obtida foi reduzida em 25% em relação a área da figura original.

Ver também

Predefinição:Bom interwiki