Germaneno: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
removendo redirecionamento
trd
Linha 1: Linha 1:
'''Germanene''' is a material made up of a single layer of [[germanium]] atoms.<ref name=phys2014>{{cite news|title=Graphene gets a 'cousin' in the shape of germanene|url=http://phys.org/news/2014-09-graphene-cousin-germanene.html|accessdate=11 September 2014|work=Phys.org|publisher=Institute of Physics}}</ref> The material is created in a process similar to that of [[silicene]] and [[graphene]], in which high vacuum and high temperature are used to deposit a layer of germanium atoms on a substrate.<ref name=phys2014 /> High-quality thin films of germanene have revealed unusual two-dimensional structures with novel electronic properties suitable for semiconductor device applications and materials science research.

==Preparation and structure==
In September 2014, G. Le Lay and others reported the deposition of a single atom thickness, ordered and two-dimensional multi-phase film by [[molecular beam epitaxy]] upon a [[gold]] surface in a [[crystal lattice]] with [[Miller indices]] (111). The structure was confirmed with [[scanning tunneling microscopy]] (STM) revealing a nearly flat honeycomb structure.<ref name=Lay2014>{{Cite journal
| doi = 10.1088/1367-2630/16/9/095002 | issn = 1367-2630
| volume = 16 | issue = 9 | pages = 095002
| last = Dávila | first = M. E. | author2 = L. Xian, S. Cahangirov, A. Rubio, G. Le Lay
| title = Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
| journal = New Journal of Physics
| accessdate = 2014-09-11 | date = 2014-09-01
| url = http://iopscience.iop.org/1367-2630/16/9/095002
}}</ref>
{{quote|We have provided compelling evidence of the birth of nearly flat germanene—a novel, synthetic germanium allotrope which does not exist in nature. It is a new cousin of graphene.|Guy Le Lay from [[Aix-Marseille University]]| New Journal of Physics}}

Additional confirmation was obtained by spectroscopic measurement and [[density functional theory]] calculations. The development of high quality and nearly flat single atom films created speculation that germanene may replace [[graphene]] if not merely add an alternative to the novel properties of related nanomaterials.<ref name=phys2014 /><ref name=Lay2014 /><ref>{{Cite web
| title = Aix-Marseille University Researchers Produce Germanium Allotrope Germanene
| accessdate = 2014-09-11
| url = http://uncovercalifornia.com/content/21548-aix-marseille-university-researchers-produce-germanium-allotrope-germanene
| publisher= Uncover California Online Media
}}</ref><ref name = "Voices">{{Cite web
| title = Germanene can be alternative to graphene, gold substrate makes it possible
| work = Northern Voices Online
| accessdate = 2014-09-11
| url = http://nvonews.com/germanene-can-be-alternative-to-graphene-gold-substrate-makes-it-possible/
}}</ref><ref>{{Cite web
| title = Gold Substrate Used To Synthesize Graphene's Cousin Germanene
| accessdate = 2014-09-11
| url = http://www.capitalotc.com/gold-substrate-used-to-synthesize-graphenes-cousin-germanene/22073/
| publisher = Capital OTC
}}</ref><ref>{{Cite news
| title = Is this the new graphene?
| accessdate = 2014-09-11
| url = http://www.cityam.com/1410362513/germanene-europes-answer-super-material-graphene
| newspaper= City A.M.
}}</ref><ref>{{Cite web
| title = New Member In The Family 'Germanene'
| accessdate = 2014-09-11
| url = http://www.capitalwired.com/new-member-in-the-family-germanene/22038/ |work= Capital Wired
}}</ref>

A technique for making germanene on a gold substrate at low temperatures via nucleation-controlled gold-induced crystallization has also been reported.<ref>{{Cite journal
| doi = 10.1063/1.4819015 | issn = 00036951
| volume = 103 | issue = 8 | pages = 082102
| last1 = Park | first1 = Jong-Hyeok | first2= Tsuneharu |last2=Suzuki
| last3 = Kurosawa | first3 = Masashi | last4 = Miyao | first4 = Masanobu | last5 = Sadoh | first5 = Taizoh
| title = Nucleation-controlled gold-induced-crystallization for selective formation of Ge(100) and (111) on insulator at low-temperature (∼250 °C)
| journal = Applied Physics Letters
| accessdate = 2014-09-11 | date = 2013-08-19
| url = http://phys.org/news/2013-09-thin-germanium.html#nRlv
| bibcode = 2013ApPhL.103h2102P
}}</ref> Based on STM observations and density functional theory calculations, formation of an apparently more distorted form of germanene has been reported on [[platinum]].<ref>{{Cite journal
| doi = 10.1002/adma.201400909 | pmid = 24841358 | issn = 09359648
| volume = 26 | issue = 28 | pages = 4820–4824
| last = Li | first = Linfei
| author2 = Shuang-zan Lu, Jinbo Pan, Zhihui Qin, Yu-qi Wang, Yeliang Wang, Geng-yu Cao, Shixuan Du, Hong-Jun Gao
| title = Buckled Germanene Formation on Pt(111)
| journal = Advanced Materials
| accessdate = 2014-09-11 | date = 2014-05-20
| url = http://doi.wiley.com/10.1002/adma.201400909}} </ref><ref name=Lay2014 /> Epitaxial growth of germanene crystals on [[Gallium arsenide|GaAs]](100) has also been demonstrated, and calculations suggest that the minimal interactions should allow germanene to be readily removed from this substrate.<ref>{{cite doi|10.1063/1.4830016}}</ref>

Germanene's structure is described as "a group-IV graphene-like two-dimensional buckled nanosheet".<ref name=Ye2014>{{Cite journal
| doi = 10.1039/C4RA01802H
| issn = 2046-2069
| volume = 4 | issue = 41 | pages = 21216–21220
| last = Ye | first = Xue-Sheng | author2 = Zhi-Gang Shao, Hongbo Zhao, Lei Yang, Cang-Long Wang
| title = Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations
| journal = RSC Advances
| accessdate = 2014-09-11 | date = 2014-05-14
| url = http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra01802h
}}</ref> Adsorption of additional germanium onto the graphene-like sheet leads to formation of "[[dumbbell]]" units, each with two out-of-plane atoms of germanium, one on either side of the plane. Dumbbells attract each other. Periodically repeating arrangements of dumbbell structures may lead to additional stable phases of germanene, with altered electronic and magnetic properties.<ref name=Ciraci2014>{{Cite journal
| doi = 10.1021/jz500977v
| issn = 1948-7185
| volume = 5
| issue = 15
| pages = 2694–2699
| last = Özçelik
| first = V. Ongun
| author2 = E. Durgun, Salim Ciraci
| title = New Phases of Germanene
| journal = The Journal of Physical Chemistry Letters
| accessdate = 2014-09-11
| date = 2014-08-07
| url = http://dx.doi.org/10.1021/jz500977v
}}</ref>

==Properties==
Germanene's electronic and optical properties have been determined from ''[[ab initio]]'' calculations,<ref name=Ni2014>{{Cite journal
| doi = 10.1021/nl203065e | pmid = 22050667 | issn = 1530-6984
| volume = 12 | issue = 1 | pages = 113–118
| last1 = Ni | first1 = Zeyuan | last2= Qihang |first2=Liu
| last3 = Tang | first3 = Kechao | last4 = Zheng | first4 = Jiaxin
| last5 = Zhou | first5 = Jing | last6 = Qin | first6 = Rui
| last7 = Gao | first7 = Zhengxiang | last8 = Yu | first8 = Dapeng
| last9 = Lu | first9 = Jing | display-authors = 9
| title = Tunable Bandgap in Silicene and Germanene
| journal = Nano Letters
| accessdate = 2014-09-11 | date = 2012-01-11
| url = http://dx.doi.org/10.1021/nl203065e
| bibcode = 2012NanoL..12..113N
}}</ref> and structural and electronic properties from first principles.<ref name=Scalise2014>{{Cite journal
| doi = 10.1007/s12274-012-0277-3 | issn = 1998-0124
| volume = 6 | issue = 1 | pages = 19–28
| last = Scalise | first = Emilio
| author2 = Michel Houssa, Geoffrey Pourtois, B. van den Broek, Valery Afanas’ev, André Stesmans
| title = Vibrational properties of silicene and germanene
| journal = Nano Research
| accessdate = 2014-09-11 | date = 2013-01-01
| url = http://link.springer.com/article/10.1007/s12274-012-0277-3
}}</ref> These properties make the material suitable for use in the channel of a high-performance [[field-effect transistor]]<ref name=Kaneko2014>{{Cite journal
| doi = 10.7567/APEX.7.035102 | issn = 1882-0786
| volume = 7 | issue = 3 | pages = 035102
| last1 = Kaneko | first1 = Shiro | first2 = Hideaki |last2=Tsuchiya
| last3 = Kamakura | first3 = Yoshinari | last4 = Mori | first4 = Nobuya | last5 = Ogawa | first5 = Matsuto
| title = Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport
| journal = Applied Physics Express
| accessdate = 2014-09-11 | date = 2014-03-01
| url = http://iopscience.iop.org/1882-0786/7/3/035102
| bibcode = 2014APExp...7c5102K
}}</ref> and have generated discussion regarding the use of elemental monolayers in other electronic devices.<ref>{{Cite journal
| doi = 10.1021/am501022x | issn = 1944-8252 | pmid = 24724967
| volume = 6 | issue = 10 | pages = 7743–7750
| last = Roome | first = Nathanael J. | author2 = J. David Carey
| title = Beyond graphene: stable elemental monolayers of silicene and germanene
| journal = ACS applied materials & interfaces
| date = 2014-05-28
}}</ref> The electronic properties of germanene are unusual, and provide a rare opportunity to test the properties of [[Dirac fermion]]s.<ref>{{Cite journal
| doi = 10.1038/nphys2379 | issn = 1745-2473
| volume = 8 | issue = 9 | pages = 653–657
| last1 = Wang | first1 = Yang | first2 = Victor W. |last2=Brar
| last3 = Shytov | first3 = Andrey V. | last4 = Wu | first4 = Qiong
| last5 = Regan | first5 = William | last6 = Tsai | first6 = Hsin-Zon
| last7 = Zettl | first7 = Alex | last8 = Levitov | first8 = Leonid S.
| last9 = Crommie | first9 = Michael F. | display-authors = 9
| title = Mapping Dirac quasiparticles near a single Coulomb impurity on graphene
| journal = Nature Physics
| accessdate = 2014-09-11 | date = 2012-09
| url = http://www.nature.com/nphys/journal/v8/n9/full/nphys2379.html
| bibcode = 2012NatPh...8..653W
}}</ref><ref name=Matthes2014>{{Cite journal
| doi = 10.1088/0953-8984/25/39/395305 | issn = 0953-8984 | bibcode = 2013JPCM...25M5305M
| volume = 25 | issue = 39 | pages = 395305
| last1 = Matthes | first1 = Lars
| last2 = Pulci | first2=Olivia
| last3 = Bechstedt | first3 = Friedhelm
| title = Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene
| journal = Journal of Physics: Condensed Matter
| accessdate = 2014-09-11 | date = 2013-10-02
| url = http://stacks.iop.org/0953-8984/25/i=39/a=395305?key=crossref.b698cb518156faea9c5f1ab0f29ee341
}}</ref> These unusual properties are generally shared by [[graphene]], [[silicene]], germanene, and [[stanene]].<ref name=Matthes2014 />

==References==
{{Reflist|colwidth=30em}}

==External links==
*[http://www.science20.com/news_articles/meet_graphenes_sexy_new_cousin_germanene-144557 Meet Graphene's Sexy New Cousin Germanene]
*[http://www.designntrend.com/articles/19324/20140910/scientists-use-gold-substrate-to-grow-graphenes-cousin-germanene.htm Scientists Use Gold Substrate to Grow Graphene's Cousin, Germanene]
*[http://www.newsledge.com/graphene-exciting-germanene-makes-appearance-9428 Graphene Family Tree? Germanene Makes Its Appearance]

[[Category:2014 in science]]
[[Category:Allotropy]]
[[Category:Germanium chemistry]]
[[Category:Nanomaterials]]
[[Category:Semiconductor materials]]

Revisão das 10h29min de 24 de setembro de 2014

Germanene is a material made up of a single layer of germanium atoms.[1] The material is created in a process similar to that of silicene and graphene, in which high vacuum and high temperature are used to deposit a layer of germanium atoms on a substrate.[1] High-quality thin films of germanene have revealed unusual two-dimensional structures with novel electronic properties suitable for semiconductor device applications and materials science research.

Preparation and structure

In September 2014, G. Le Lay and others reported the deposition of a single atom thickness, ordered and two-dimensional multi-phase film by molecular beam epitaxy upon a gold surface in a crystal lattice with Miller indices (111). The structure was confirmed with scanning tunneling microscopy (STM) revealing a nearly flat honeycomb structure.[2]

We have provided compelling evidence of the birth of nearly flat germanene—a novel, synthetic germanium allotrope which does not exist in nature. It is a new cousin of graphene.
Original {{{{{língua}}}}}: New Journal of Physics
— Guy Le Lay from Aix-Marseille University

Additional confirmation was obtained by spectroscopic measurement and density functional theory calculations. The development of high quality and nearly flat single atom films created speculation that germanene may replace graphene if not merely add an alternative to the novel properties of related nanomaterials.[1][2][3][4][5][6][7]

A technique for making germanene on a gold substrate at low temperatures via nucleation-controlled gold-induced crystallization has also been reported.[8] Based on STM observations and density functional theory calculations, formation of an apparently more distorted form of germanene has been reported on platinum.[9][2] Epitaxial growth of germanene crystals on GaAs(100) has also been demonstrated, and calculations suggest that the minimal interactions should allow germanene to be readily removed from this substrate.[10]

Germanene's structure is described as "a group-IV graphene-like two-dimensional buckled nanosheet".[11] Adsorption of additional germanium onto the graphene-like sheet leads to formation of "dumbbell" units, each with two out-of-plane atoms of germanium, one on either side of the plane. Dumbbells attract each other. Periodically repeating arrangements of dumbbell structures may lead to additional stable phases of germanene, with altered electronic and magnetic properties.[12]

Properties

Germanene's electronic and optical properties have been determined from ab initio calculations,[13] and structural and electronic properties from first principles.[14] These properties make the material suitable for use in the channel of a high-performance field-effect transistor[15] and have generated discussion regarding the use of elemental monolayers in other electronic devices.[16] The electronic properties of germanene are unusual, and provide a rare opportunity to test the properties of Dirac fermions.[17][18] These unusual properties are generally shared by graphene, silicene, germanene, and stanene.[18]

References

  1. a b c «Graphene gets a 'cousin' in the shape of germanene». Phys.org. Institute of Physics. Consultado em 11 September 2014  Verifique data em: |acessodata= (ajuda)
  2. a b c Dávila, M. E.; L. Xian, S. Cahangirov, A. Rubio, G. Le Lay (1 de setembro de 2014). «Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene». New Journal of Physics. 16 (9). 095002 páginas. ISSN 1367-2630. doi:10.1088/1367-2630/16/9/095002. Consultado em 11 de setembro de 2014 
  3. «Aix-Marseille University Researchers Produce Germanium Allotrope Germanene». Uncover California Online Media. Consultado em 11 de setembro de 2014 
  4. «Germanene can be alternative to graphene, gold substrate makes it possible». Northern Voices Online. Consultado em 11 de setembro de 2014 
  5. «Gold Substrate Used To Synthesize Graphene's Cousin Germanene». Capital OTC. Consultado em 11 de setembro de 2014 
  6. «Is this the new graphene?». City A.M. Consultado em 11 de setembro de 2014 
  7. «New Member In The Family 'Germanene'». Capital Wired. Consultado em 11 de setembro de 2014 
  8. Park, Jong-Hyeok; Suzuki, Tsuneharu; Kurosawa, Masashi; Miyao, Masanobu; Sadoh, Taizoh (19 de agosto de 2013). «Nucleation-controlled gold-induced-crystallization for selective formation of Ge(100) and (111) on insulator at low-temperature (∼250 °C)». Applied Physics Letters. 103 (8). 082102 páginas. Bibcode:2013ApPhL.103h2102P. ISSN 0003-6951. doi:10.1063/1.4819015. Consultado em 11 de setembro de 2014 
  9. Li, Linfei; Shuang-zan Lu, Jinbo Pan, Zhihui Qin, Yu-qi Wang, Yeliang Wang, Geng-yu Cao, Shixuan Du, Hong-Jun Gao (20 de maio de 2014). «Buckled Germanene Formation on Pt(111)». Advanced Materials. 26 (28): 4820–4824. ISSN 0935-9648. PMID 24841358. doi:10.1002/adma.201400909. Consultado em 11 de setembro de 2014 
  10. doi:10.1063/1.4830016
    Esta predefinição está obsoleta; veja {{Cite doi}} para mais informações. Esta citação não está completa. Você pode completá-la manualmente
  11. Ye, Xue-Sheng; Zhi-Gang Shao, Hongbo Zhao, Lei Yang, Cang-Long Wang (14 de maio de 2014). «Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations». RSC Advances. 4 (41): 21216–21220. ISSN 2046-2069. doi:10.1039/C4RA01802H. Consultado em 11 de setembro de 2014 
  12. Özçelik, V. Ongun; E. Durgun, Salim Ciraci (7 de agosto de 2014). «New Phases of Germanene». The Journal of Physical Chemistry Letters. 5 (15): 2694–2699. ISSN 1948-7185. doi:10.1021/jz500977v. Consultado em 11 de setembro de 2014 
  13. Ni, Zeyuan; Qihang, Liu; Tang, Kechao; Zheng, Jiaxin; Zhou, Jing; Qin, Rui; Gao, Zhengxiang; Yu, Dapeng; Lu, Jing (11 de janeiro de 2012). «Tunable Bandgap in Silicene and Germanene». Nano Letters. 12 (1): 113–118. Bibcode:2012NanoL..12..113N. ISSN 1530-6984. PMID 22050667. doi:10.1021/nl203065e. Consultado em 11 de setembro de 2014 
  14. Scalise, Emilio; Michel Houssa, Geoffrey Pourtois, B. van den Broek, Valery Afanas’ev, André Stesmans (1 de janeiro de 2013). «Vibrational properties of silicene and germanene». Nano Research. 6 (1): 19–28. ISSN 1998-0124. doi:10.1007/s12274-012-0277-3. Consultado em 11 de setembro de 2014 
  15. Kaneko, Shiro; Tsuchiya, Hideaki; Kamakura, Yoshinari; Mori, Nobuya; Ogawa, Matsuto (1 de março de 2014). «Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport». Applied Physics Express. 7 (3). 035102 páginas. Bibcode:2014APExp...7c5102K. ISSN 1882-0786. doi:10.7567/APEX.7.035102. Consultado em 11 de setembro de 2014 
  16. Roome, Nathanael J.; J. David Carey (28 de maio de 2014). «Beyond graphene: stable elemental monolayers of silicene and germanene». ACS applied materials & interfaces. 6 (10): 7743–7750. ISSN 1944-8252. PMID 24724967. doi:10.1021/am501022x 
  17. Wang, Yang; Brar, Victor W.; Shytov, Andrey V.; Wu, Qiong; Regan, William; Tsai, Hsin-Zon; Zettl, Alex; Levitov, Leonid S.; Crommie, Michael F. (setembro de 2012). «Mapping Dirac quasiparticles near a single Coulomb impurity on graphene». Nature Physics. 8 (9): 653–657. Bibcode:2012NatPh...8..653W. ISSN 1745-2473. doi:10.1038/nphys2379. Consultado em 11 de setembro de 2014 
  18. a b Matthes, Lars; Pulci, Olivia; Bechstedt, Friedhelm (2 de outubro de 2013). «Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene». Journal of Physics: Condensed Matter. 25 (39). 395305 páginas. Bibcode:2013JPCM...25M5305M. ISSN 0953-8984. doi:10.1088/0953-8984/25/39/395305. Consultado em 11 de setembro de 2014 

External links