Bremsstrahlung

Origem: Wikipédia, a enciclopédia livre.

Bremsstrahlung é a radiação produzida quando cargas elétricas sofrem desaceleração. A palavra de origem alemã significa: Bremsen= frear e Strahlung= radiação.

Quando partículas carregadas, principalmente elétrons, interagem com o campo elétrico de núcleos de número atômico elevado ou com a eletrosfera, elas reduzem a energia cinética, mudam de direção e emitem a diferença de energia sob a forma de ondas eletromagnéticas, denominadas de raios X de freamento ou "bremsstrahlung".

A energia dos raios X de freamento depende fundamentalmente da energia da partícula incidente. Os raios X gerados para uso médico e industrial não passam dos 500 keV, embora possam ser obtidos em laboratório raios X até com centenas de MeV. Como o processo depende da energia e da intensidade de interação da partícula incidente com o núcleo e de seu ângulo de "saída", a energia da radiação produzida pode variar de zero a um valor máximo, sendo contínuo seu espectro em energia.

Nota: Na produção de raios X de freamento são produzidos também raios X característicos referentes ao material com o qual a radiação está interagindo. Esses raios X característicos somam-se ao espectro de raios X de freamento e aparecem com picos destacados nesse espectro.

Ao interagir com a matéria, a radiação incidente pode também transformar total ou parcialmente sua energia em outro tipo de radiação. Isso ocorre na geração dos raios X de freamento, na produção de pares e na radiação de aniquilação.

Enquanto que os raios X característicos são provenientes da interação em processos de decaimento.

Raios X característicos

Quando ocorre a captura eletrônica ou outro processo que retire elétrons da eletrosfera do átomo, a vacância originada pelo elétron é imediatamente preenchida por algum elétron de orbitais superiores. Ao passar de um estado menos ligado para outro mais ligado (por estar mais interno na estrutura eletrônica), o excesso de energia do elétron é liberado por meio de uma radiação eletromagnética, cuja energia é igual à diferença de energia entre o estado inicial e o final. Vai ocorrer instabilidade do átomo do ânodo, com "saltos" quânticos e libertação de radiação electromagnética característica do respectivo material, até que o estado energético do átomo seja mínimo. A denominação "característico" se deve ao fato dos fótons emitidos, por transição, serem monoenergéticos e revelarem detalhes da estrutura eletrônica do elemento químico e, assim, sua energia e intensidade relativa permitem a identificação do elemento de origem.

A produção de Rx só ocorre por materiais de número atómico elevado (como o caso do tungsténio). Os raios X característicos são portanto dependentes dos níveis de energia da eletrosfera e, dessa forma, seu espectro de distribuição em energia é discreto.

Como a emissão de raios X característicos é um fenômeno que ocorre com energia da ordem da energia de ligação dos diversos níveis da eletrosfera, as energias de emissão dos raios X característicos variam de alguns eV a dezenas de keV. Agora, baseados no modelo de Bohr podemos entender como são gerados os raios característicos, e porquê o espectro obtido com o tungstênio apresenta apenas linhas discretas.

Quando o elétron proveniente do cátodo incide no ânodo, ele pode expulsar um elétron orbital. A órbita de onde o elétron será expulso, depende da energia do elétron incidente e dos níveis de energia do átomo do anodo. A lacuna deixada por este elétron será preenchida por um elétron mais externo.

Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.