Épsilon de máquina

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Gráfico de ((1+x)-1)/x calculado em sistema de numeração do tipo 'double'. Idealmente o resultado seria 1, o gráfico mostra o efeito da perda de significância na operação (1+x) quando x é pequeno. Quando x se torna menor que o épsilon de máquina, a expressão se torna nula.

Em aritmética de ponto flutuante, denomina-se épsilon da máquina o menor número que somado a 1 produza resultado diferente de 1, ou seja, que não é arredondado. O épsilon de máquina representa a exatidão relativa da aritmética do computador, e a sua existência é uma consequência direta da precisão finita da aritmética de ponto flutuante. O valor também é chamado de unidade de arredondamento ou menor número representável, e é simbolizado pela letra grega épsilon .[1][2]

Definição formal[editar | editar código-fonte]

Arredondamento é o processo de escolha da representação de um número real em um sistema numérico de ponto flutuante. Para um determinado sistema numérico e um procedimento de arredondamento, o épsilon de máquina é o máximo erro relativo do procedimento escolhido.

Algumas explicações são necessárias para se determinar o valor dessa definição. Um sistema numérico de ponto flutuante é caracterizado por uma base , e por uma precisão , por exemplo, o número de dígitos na base da mantissa (incluindo qualquer bit implícito). Todos os números com o mesmo expoente têm o espaçamento . O espaçamento muda nos números que são potências perfeitas de ; o espaçamento no lado de maior magnitude é vezes maior que o espaçamento no lado de menor magnitude.

Uma vez que o épsilon de máquina é o limite do erro relativo, é suficiente considerar números com expoente . Também é suficiente para considerar números positivos. Para o método de arredondamento do valor mais próximo, o erro absoluto de arredondamento é no máximo metade do espaçamento, ou . Este valor é o maior numerador possível para o erro relativo. O denominador no erro relativo é o número sendo arredondado, que deve ser o menor possível para tornar o erro maior. O maior erro relativo, portanto, acontece quando o arredondamento é aplicado a números na forma onde está entre e . Todos esses números arredondam para com erro relativo . O máximo ocorre quando está no limite superior do intervalo. O no denominador tem pouca importância, sendo deixado de fora por conveniência, e apenas é tomado com o épsilon de máquina. Como foi mostrado aqui, o erro relativo é maior para números que são arredondados para , então o épsilon de máquina também é chamado de unidade de arredondamento, significando simplesmente "o máximo erro que pode ocorrer quando se arredonda para o valor unitário".

Assim, o máximo espaçamento entre um número normalizado em ponto flutuante , e um número normalizado adjacente é x .[3]

Modelo aritmético[editar | editar código-fonte]

A análise numérica usa o épsilon de máquina para estudar os efeitos dos erros de arredondamento. Os reais erros da aritmética computacional são complexos demais para serem diretamente estudados, então, em vez disso, o seguinte modelo simplificado é utilizado. O padrão aritmético da IEEE define que todas as operações de ponto flutuante são feitas como se fosse possível executá-las com precisão infinita, e então o resultado é arredondado para um número de ponto flutuante. Suponha que (1) e são números de ponto flutuante, que (2) é uma operação aritmética em ponto flutuante como adição ou multiplicação, e que (3) é a operação de precisão infinita. De acordo com o padrão, o computador calcula:

Pela definição, o erro relativo do arredondamento é máximo quando igual ao épsilon da máquina, então:

onde em grandeza absoluta é no máximo .

Como determinar o épsilon de máquina[editar | editar código-fonte]

Os valores de épsilon de máquina a seguir se aplicam a formatos padronizados de ponto flutuante:

IEEE 754 - 2008 Nome usual Tipo de dado em C++ Base Precisão Épsilon de máquina[a] Épsilon de máquina[b]
binary16 meia precisão indisponível 2 11 (um bit implícito) 2 -11 = 4.88e-04 2 -10 = 9.77e-04
binary32 precisão singular float 2 24 (um bit implícito) 2 -24 = 5.96e-08 2 -23 = 1.19e-07
binary64 precisão dupla double 2 53 (um bit implícito) 2 -53 = 1.11e-16 2 -52 = 2.22e-16
binary80 precisão estendida _float80[4] 2 64 2 -64 = 5.42e-20 2 -63 = 1.08e-19
binary128 precisão quádrupla _float128[4] 2 113 (um bit implícito) 2 -113 = 9.63e-35 2 -112 = 1.93e-34
decimal32 precisão singular decimal _Decimal32[5] 10 7 5 × 10 -7 10−6
decimal64 precisão dupla decimal _Decimal64[5] 10 16 5 × 10 -16 10−15
decimal128 precisão quádrupla decimal _Decimal128[5] 10 34 5 × 10 -34 10−33

a de acordo com Prof. Demmel, LAPACK, Scilab b de acordo com Prof. Higham; Padrão ISO C; constantes de linguagem C, C++ e Python; Mathematica, MATLAB e Octave


O épsilon de máquina de um sistema pode ser aproximado (a um fator de 2) pelo seguinte algoritmo em pseudocódigo: [6]

eps=1

while (eps+1) > 1
   eps=eps/2
end

eps=eps*2

Cancelamento catastrófico[editar | editar código-fonte]

Ver artigo principal: Cancelamento catastrófico

O cancelamento catastrófico é um efeito que ocorre quando excedemos o limite de precisão do sistema de numeração, sendo caracterizado por um aumento substancial do erro relativo dos resultados. O exemplo característico desse tipo de erro é quando o resultado da subtração de dois números se aproxima do valor do épsilon de máquina.[7]

Veja também[editar | editar código-fonte]

Referências

  1. Bortoli, Álvaro L.; Cardoso, Carolina; Fachin, Maria P. G.; Cunha, Rudnei D (2003). Introdução a Cálculo Numérico (PDF) [S.l.: s.n.] p. 15. 
  2. Sanches, Carlos A. A (2012). Matemática Computacional: Erros de Arredondamento (PDF) [S.l.: s.n.] 
  3. Higham, Nicholas (2002). Accuracy and Stability of Numerical Algorithms (2 ed) SIAM [S.l.] p. 37. 
  4. a b Floating Types - Using the GNU Compiler Collection (GCC)
  5. a b c Decimal Float - Using the GNU Compiler Collection (GCC)
  6. E. Elliott Ward Cheney, David Ronald Kincaid (2012). Numerical mathematics and computing Cengage Learning [S.l.] 
  7. L.A.Sphaier, L.S.B.Alves. Representação de Números, Erros Numéricos e Aritmética Computacional. Disponível em www.sphaier.com