Clock

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde junho de 2011). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Cristal e CI gerador de frequência (clock) numa placa-mãe de computador.

Em eletrônica e especialmente em circuitos digitais síncronos, o clock é um sinal usado para coordenar as ações de dois ou mais circuitos eletrônicos. Um sinal de clock oscila entre os estados alto e baixo, normalmente usando um duty cycle de 50%, e gerando uma onda quadrada. Circuitos que usam o sinal de clock para sincronização podem se tornar ativos no ápice, na queda ou em ambos os momentos do sinal de clock (por exemplo, uma DDR SDRAM).

Circuito Digital[editar | editar código-fonte]

A maioria dos circuitos integrados (CIs) complexos o suficiente usa um sinal de clock para sincronizar as diferentes partes do circuito. Em alguns casos, mais do que um ciclo de clock é necessário para executar uma ação previsível. Como os circuitos integrados se tornaram mais complexos, o problema de fornecer Clocks precisos e sincronizados para todos os circuitos torna-se cada vez mais difícil. O exemplo mais proeminente das tais circuitos complexos é o microprocessador, o componente central de computadores modernos, que se baseia em um clock a partir de um oscilador de cristal. As únicas exceções são os circuitos assíncronos, tais como CPUs assíncronas.

Um sinal de Clock também pode ser fechado, isto é, combinado com um sinal de controle, que ativa ou desativa o sinal de clock em uma determinada parte de um circuito. Esta técnica é frequentemente usada para economizar energia desligando efetivamente partes de um circuito digital quando não estão em uso.

Clock monofásico[editar | editar código-fonte]

A maioria dos circuitos síncronos modernos usam apenas um "Clock monofásico". Em outras palavras, eles transmitem todos os sinais de clock em (efetivamente) 1 fio.

Clock bifásico[editar | editar código-fonte]

Em circuitos síncronos, um "Clock de duas fases" refere-se a sinais de Clock distribuídos em 2 fios, cada um com pulsos não sobrepostos. Tradicionalmente, um fio é chamado "fase 1", o outro fio transporta o sinal da "fase 2".

Clock tetrafásico[editar | editar código-fonte]

O "Clock de 4 fases" tem sinais distribuídos em 4 fios.

Em alguns microprocessadores primitivos, tais como a família IMP-16 da National Semiconductor, um clock multifásico foi utilizado. No caso do IMP-16, o clock tinha quatro fases, cada uma com 90 graus separando-se da outra, a fim de sincronizar as operações do núcleo do processador e dos seus periféricos.  

No entanto, a maioria dos microprocessadores e microcontroladores modernos usam um Clock monofásico.

Multiplicador de Clock[editar | editar código-fonte]

Muitos microcomputadores modernos utilizam um "multiplicador de clock", que multiplica o clock externo (com um frequência inferior) à frequência de clock adequada do microprocessador. Isso permite que a CPU opere em uma frequência muito maior do que o resto do computador, o que proporciona ganhos de desempenho em situações que a CPU não precisa esperar por um fator externo (como memória ou entrada / saída).

Mudança de frequência dinâmica[editar | editar código-fonte]

A grande maioria dos dispositivos digitais não exigem um Clock em uma frequência constante (fixa). Enquanto os tempos mínimos e máximos de clock são respeitados, o tempo entre os picos de clock pode variar muito de uma ponta a outra e vice-versa. Tais dispositivos digitais funcionam tão bem com um gerador de clock que modifica sua frequência (como espalhamento espectral, PowerNow!, Cool'n'Quiet, Passorrápido, etc.). Dispositivos que usam a lógica estática nem mesmo têm um tempo máximo de clock; tais dispositivos podem ser retardados e parados por tempo indeterminado, e em seguida retomar a velocidade de clock completa em qualquer momento posterior.

Outros Circuitos[editar | editar código-fonte]

Alguns circuitos integrados híbridos sensíveis, como conversores analógico-digitais de precisão, usam senoides em vez de ondas quadradas como seus sinais de clock, porque ondas quadradas possuem harmônicas de alta frequência que podem interferir com circuitos analógicos e causar ruído.

Distribuição[editar | editar código-fonte]

A maneira mais efetiva de transportar um sinal de clock para todas as partes necessárias de um chip, com a menor inclinação, é uma grade metálica. Num processador grande, a energia usada para transportar o sinal de clock pode ser superior à 30% do total de energia gasto pelo chip. A estrutura toda com as portas nos finais e todos os amplificadores no meio precisam ser carregados e descarregados a cada ciclo. Para poupar energia, o clock gating desliga temporariamente parte da estrutura.

Sinais de clock são tipicamente carregados com a maior fan-out e operam com as maiores velocidades de qualquer sinal dentro do sistema de sincronia. Desde que os sinais de dados são fornecidos com uma referência temporal pelos sinais de clock, as formas de onda do clock precisam ser particularmente limpas e nítidas.

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre hardware é um esboço. Você pode ajudar a Wikipédia expandindo-o.