Diferenciação planetária
Na ciência planetária, diferenciação planetária é o processo pelo qual os elementos químicos de um corpo planetário se acumulam em diferentes áreas desse corpo, devido ao seu comportamento físico ou químico (por exemplo, densidade e afinidades químicas). O processo de diferenciação planetária é mediado pela fusão parcial com calor do decaimento de isótopos radioativos e acreção planetária. A diferenciação planetária ocorreu em planetas, planetas anões, o asteroide 4 Vesta e satélites naturais (como a Lua).
Características físicas
[editar | editar código-fonte]Massa
[editar | editar código-fonte]Uma característica física definidora de um planeta é que ele tenha massa suficiente para que a força de sua própria gravidade domine as forças eletromagnéticas que unem a sua estrutura física, levando a um estado de equilíbrio hidrostático. Isto efetivamente significa que todos os planetas são esféricos ou esferoidais. Até uma determinada massa, um objeto pode ter uma forma irregular, mas a partir deste ponto, que varia em função da sua composição química, a gravidade começa a puxar o objeto em direção ao seu centro de massa, até que ele colapsa, tornando-se uma esfera.[1]
A massa é também o primeiro atributo pelo qual os planetas se distinguem das estrelas. O limite superior de massa para planetas é aproximadamente 13 vezes a massa de Júpiter (MJ) para objetos com abundância natural semelhante ao Sol, a partir do que ele ganha condição favorável para a fusão nuclear. Além do Sol, nenhum objeto com tal massa existe no Sistema Solar, mas há planetas extrassolares neste limite. Não há uma concordância universal para o limite de 13 MJ, e a Enciclopédia de Planetas Extrassolares inclui objetos de até 60 MJ,[2] enquanto o Exoplanet Data Explorer considera até 24 massas de Júpiter.[3]
O menor planeta conhecido, excluindo planetas anões e satélites, é PSR B1257+12A, um dos primeiros planetas extrassolares descobertos, que foi encontrado em 1992 em órbita de um pulsar. Sua massa é aproximadamente a metade da de Mercúrio. O menor planeta conhecido orbitando uma estrela da sequência principal que não o Sol é Kepler-37b, com massa (e raio) ligeiramente maior do que a da Lua.
Diferenciação interna
[editar | editar código-fonte]Todo planeta iniciou sua existência em um estado inteiramente fluido; no início da formação, os materiais mais densos e pesados migraram para o centro, deixando os mais leves perto da superfície. Cada um, portanto, tem o interior diferenciado, consistindo de um núcleo planetário denso, cercado de um manto que é ou era fluido. Os planetas terrestres são selados com crostas duras,[4] mas nos gigantes gasosos o manto simplesmente se dissolve nas camadas superiores de nuvens. Os planetas terrestres possuem núcleos de elementos como ferro e níquel e mantos de silicatos. Acredita-se que Júpiter e Saturno possuam núcleos de rocha e metal, cercados de mantos de hidrogênio metálico.[5] Urano e Netuno, que são menores, possuem núcleos rochosos, cercado de mantos de água, amônia, metano e outros "gelos" (substâncias voláteis com pontos de fusão acima de 100 K).[6] A ação dos fluidos internos aos núcleos dos planetas cria um geodínamo, que gera um campo magnético.[4]
Atmosfera
[editar | editar código-fonte]Todos os planetas do Sistema Solar têm atmosferas, uma vez que suas grandes massas tornam a gravidade suficientemente forte para manter partículas gasosas próximas à superfície. Os gigantes gasosos maiores têm massa suficiente para manter grandes quantidades dos gases leves hidrogênio e hélio, enquanto os planetas menores perdem esses gases para o espaço.[7] A composição da atmosfera da Terra é diferente da dos outros planetas porque os diversos processos da vida que ocorreram no planeta introduziram oxigênio molecular livre.[8]
As atmosferas planetárias são afetadas pelos variados graus de energia recebida tanto do Sol quanto dos seus interiores, levando à formação de sistemas climáticos dinâmicos, como os furacões (na Terra), tempestades de areia em escala planetária (em Marte), um anticiclone do tamanho da Terra em Júpiter (chamado a Grande Mancha Vermelha) e buracos na atmosfera (em Netuno). Pelo menos em um planeta extrassolar, o HD 189733 b, foi identificado um sistema climático similar à Grande Mancha Vermelha, mas duas vezes maior.[9]
Foi observado que os Jupiteres quentes perdem suas atmosferas para o espaço devido à radiação estelar, tal qual as caudas dos cometas.[10][11] Esses planetas podem ter grandes diferenças na temperatura entre os seus lados de dia e de noite, o que produz ventos supersônicos;[12] no entanto, os lados de dia e de noite do HD 1889733 b parecem ter temperaturas muito similares, indicando que a atmosfera efetivamente redistribui a energia da estrela em torno do planeta.[9]
Magnetosfera
[editar | editar código-fonte]Uma característica importante dos planetas são seus momentos magnéticos intrínsecos, que dão origem a magnetosferas. A presença de um campo magnético indica que o planeta ainda é geologicamente ativo. Em outras palavras, planetas magnetizados possuem fluxos de materiais condutores elétricos em seu interior, gerando os campos magnéticos. Esses campos modificam significativamente a interação entre o planeta e o vento solar. Um planeta magnetizado cria uma cavidade no vento solar no seu entorno, chamada magnetosfera, que o vento solar não consegue penetrar. A magnetosfera pode ser muito maior do que o próprio planeta. Em contraste, planetas não magnetizados têm somente pequenas magnetosferas induzidas pela interação da ionosfera com o vento solar, que não é capaz de proteger efetivamente o planeta.[13]
Dos oito planetas do Sistema Solar, apenas Vênus e Marte carecem de um campo magnético,[13] enquanto a lua Ganimedes, de Júpiter, possui um. Dos planetas magnetizados, o campo de Mercúrio é o mais fraco, mal conseguindo defletir o vento solar. O campo magnético de Ganimedes é várias vezes maior, enquanto o de Júpiter é o maior do Sistema Solar, tão forte que representa um sério risco para a segurança de futuras missões tripuladas para as suas luas. A força dos campos magnéticos dos outros planetas gigantes é aproximadamente similar à da Terra, mas os seus momentos magnéticos são significativamente maiores. Os campos magnéticos de Urano e Netuno são fortemente inclinados em relação ao eixo rotacional e deslocados do centro do planeta.[13]
Em 2004, uma equipe de astrônomos no Havaí observou um planeta extrassolar em torno da estrela HD 179949 que parecia estar criando uma mancha na superfície da sua estrela. A equipe lançou a hipótese de que a magnetosfera do planeta estava transferindo energia para a superfície da estrela, aumentando sua já alta temperatura de 7 760 °C em mais 400 °C.[14]
Referências
- ↑ Brown, Michael E. (2006). «The Dwarf Planets». California Institute of Technology. Consultado em 1 de fevereiro de 2008
- ↑ How One Astronomer Became the Unofficial Exoplanet Record-Keeper, www.scientificamerican.com
- ↑ The Exoplanet Orbit Database, Jason T Wright, Onsi Fakhouri, Geoffrey W. Marcy, Eunkyu Han, Ying Feng, John Asher Johnson, Andrew W. Howard, Jeff A. Valenti, Jay Anderson, Nikolai Piskunov
- ↑ a b «Planetary Interiors». Department of Physics, University of Oregon. Consultado em 23 de agosto de 2008
- ↑ Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8
- ↑ Podolak, M.; Weizman, A.; Marley, M. (1995). «Comparative model of Uranus and Neptune». Planet. Space Sci. 43 (12): 1517–1522. doi:10.1016/0032-0633(95)00061-5
- ↑ Sheppard, Scott S.; Jewitt, David; Kleyna, Jan (2005). «An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness». The Astronomical Journal. 129: 518–525. doi:10.1086/426329. Arxiv
- ↑ Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics 4th ed. [S.l.]: Saunders College Publishing. p. 67. ISBN 0030062284
- ↑ a b Knutson, Heather A.; Charbonneau, David; Allen, Lori E.; Fortney, Jonathan J. (2007). «A map of the day-night contrast of the extrasolar planet HD 189733b». Nature. 447 (7141): 183. PMID 17495920. doi:10.1038/nature05782. Resumo divulgativo – Center for Astrophysics press release (9 de maio de 2007)
- ↑ Weaver, D.; Villard, R. (31 de janeiro de 2007). «Hubble Probes Layer-cake Structure of Alien World's Atmosphere». University of Arizona, Lunar and Planetary Laboratory (Press Release). Consultado em 23 de agosto de 2008
- ↑ Ballester, Gilda E.; Sing, David K.; Herbert, Floyd (2007). «The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b». Nature. 445 (7127): 511. PMID 17268463. doi:10.1038/nature05525
- ↑ Harrington, Jason; Hansen, Brad M.; Luszcz, Statia H.; Seager, Sara (2006). «The phase-dependent infrared brightness of the extrasolar planet Andromeda b». Science. 314 (5799): 623. PMID 17038587. doi:10.1126/science.1133904. Resumo divulgativo – NASA press release (12 de outubro de 2006)
- ↑ a b c Kivelson, Margaret Galland; Bagenal, Fran (2007). «Planetary Magnetospheres». In: Lucyann Mcfadden; Paul Weissman; Torrence Johnson. Encyclopedia of the Solar System. [S.l.]: Academic Press. p. 519. ISBN 9780120885893
- ↑ Gefter, Amanda (17 de janeiro de 2004). «Magnetic planet». Astronomy. Consultado em 29 de janeiro de 2008