Espectroscopia NMR

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Um instrumento RMN de 900MHz com um magneto de 21.2 T no Henry Wellcome Building for NMR (HWB-NMR), Birmingham, GB.

Espectroscopia por ressonância magnética nuclear, mais conhecida como espectroscopia por RMN, é uma técnica de pesquisa que explora as propriedades magnéticas de certos núcleos atômicos para determinar propriedades físicas ou químicas de átomos ou moléculas nos quais eles estão contidos. Baseia-se no fenômeno da ressonância magnética nuclear e pode fornecer informações detalhadas sobre a estrutura, dinâmica, estado de reação e ambiente químico das moléculas.

Mais frequentemente, espectroscopia RMN é usada por químicos e bioquímicos para investigar as propriedades de moléculas orgânicas, embora seja aplicável para qualquer núcleo que possua spin. Isto é válido desde compostos pequenos analisados com próton ou carbono unidimensional até grandes proteínas ou ácidos nucléicos usando técnicas de análise em 3 ou 4 dimensões. O impacto da espectroscopia NMR nas ciências naturais tem sido substancial, e esta técnica pode ser aplicada a uma grande variedade de amostras em solução e estado sólido.

Técnicas básicas de RMN[editar | editar código-fonte]

A amostra RMN é preparada em um tubo de vidro de paredes finas - um tubo de RMN.

Na presença de um campo magnético, núcleos ativos à RMN (tais como 1H ou 13C) absorvem radiação eletromagnética a uma frequência característica do isótopo. A frequência de ressonância, a energia de absorção e a intensidade do sinal são proporcionais à força do campo magnético. Por exemplo, em um campo magnético de 21 tesla, prótons ressoam a 900 MHz. É comum referir-se ao magneto de 21 T como magneto de 900 MHz, embora diferentes núcleos ressoem a diferentes frequências para esse valor do campo.

No campo magnético da Terra, os mesmos núcleos ressoam em audiofrequências. Este efeito é usado em espectrômetros RMN de campo geomagnético e outros instrumentos. Por serem portáteis e baratos, são muitas vezes usados em aulas e trabalhos de campo.

O Espectrômetro de RMN[editar | editar código-fonte]

Existem dois tipos de espectrômetros de RMN: os mais antigos, de onda contínua (CW, na sigla em inglês) e os mais recentes, de pulso ou de Transformada de Fourier (FT-NMR, na sigla em inglês). Nos equipamentos CW, os espectros eram coletados através de lentas alterações no sinal da frequência de rádio, localizado próximo a amostra. O processo matemático conhecido como Transformada de Fourier, converte o sinal, que originalmente foi obtido em função do domínio tempo (Free Induction Decay, ou FID), para uma função no domínio da frequência. Assim, gera-se um gráfico da intensidade do sinal (eixo y) em função da frequência (eixo x), que consiste no espectro de RMN. A grande vantagem do FT-NMR é a rapidez de aquisição dos dados, uma vez que um espectro inteiro é coletado no período de 2 a 3 segundos, enquanto que no CW eram necessários 5 minutos. Assim, os equipamentos CW são hoje considerados obsoletos[1].

Os componentes básicos de um espectrômetro de RMN são os seguintes: um magneto supercondutor, uma sonda, um transmissor de rádio, um receptor de rádio, um conversor de sinal analógico para digital (ADC) e um computador[1].

O magneto é um solenóide composto por uma mistura dos metais supercondutores nióbio e titânio, o qual fica imerso num banho de hélio líquido, na temperatura de aproximadamente 4 K. Uma larga corrente flui pelos loops do solenóide, gerando um campo magnético forte e contínuo, sem alimentação externa. O compartimento de hélio é resfriado por uma jaqueta térmica, preenchida, por sua vez, com nitrogênio líquido (77 K)[1].

A sonda é uma bobina de fios, posicionada perto da amostra, permitindo a alternância entre a transmissão e a recepção dos sinais de frequência de rádio. O computador direciona o transmissor a enviar pulsos na frequência de rádio, com alta energia e curta duração, para a sonda. Logo após esse pulso, o fraco sinal recebido é amplificado, convertido em frequência de áudio e registrado em intervalos de tempo definidos pelo ADC, criando um sinal digital, que se consiste basicamente em uma lista de números[1].

O computador determina a intensidade e o tempo dos pulsos, além de processar os sinais digitais fornecidos pelo ADC e aplicar a transformada de Fourier, gerando o espectro de RMN no monitor[1].

O custo de um espectrômetro de RMN varia de 120 mil a 5 milhões de dólares, dependendo da força do campo magnético (200 a 900 MHz, na frequência do próton). Os principais fabricantes mundiais desses equipamentos são as empresas Bruker Corporation e Agilent Technologies (ambas americanas).


Aplicação da Ressonância Magnética Nuclear na Metrologia[editar | editar código-fonte]

A espectroscopia de ressonância magnética nuclear (RMN) é uma técnica analítica baseada no fato de alguns núcleos atômicos possuírem propriedades de spin e momento magnético, que possibilita serem levados a um deslocamento de seus níveis de energia quando expostos a um campo magnético intenso. No caso da ressonância magnética nuclear de hidrogênio, o núcleo atômico de interesse é o próton (1H). A análise consiste em submeter o núcleo atômico a um campo magnético artificial que será responsável pela transição de nível energético e a intensidade (I) do sinal será diretamente proporcional ao número de núcleos em ressonância independentemente da estrutura analisada[2][3].

A espectroscopia de RMN de hidrogênio, método quantitativo (RMNq 1H) permite a elucidação de estruturas químicas, identificação e quantificação, isso é possível porque a área do sinal integrado é diretamente proporcional ao número de núcleos que originaram aquele sinal[4][5].Para a quantificação direta das substâncias, procedimentos primários de medição devem ser empregados, quando possível,  para garantir que o resultado da pureza do analito tenha rastreabilidade ao SI. RMN é considerada um método de medição potencialmente primário. Ou seja, é um método que fornece resultados diretamente rastreáveis ao Sistema Internacional de Unidades, conhecido por SI, sem precisar de padrões ou materiais de referência intermediários, nem de fatores de correção empíricos[6]. O método primário permite transformar a definição abstrata de uma unidade do SI em medidas experimentais baseadas naquela unidade[7][8].

Essa aplicação da RMN na quantificação de substâncias vem chamando a atenção de diversos Institutos Nacionais de Metrologia. Esta técnica pode ser usada, por exemplo, na produção de material de referência certificado (MRC) na etapa de caracterização, sendo utilizada para a determinação da pureza de compostos orgânicos pelo método de padronização interna[9][10].

Em função da sua aplicabilidade, facilidade de preparo de amostra e confiabilidade de resultados, esta técnica tem ganhado grande importância na comunidade científica[9][10]. Isso se deve à capacidade única de qNMR de atingir a mesma magnitude de resposta de núcleos magnéticos, como 1H, independentemente da estrutura química[7].

A melhor forma para obter resultados rastreáveis ao SI por RMN é medir a razão entre a área do sinal que se pretende quantificar e a área de um padrão interno. Por isso, a RMN pode ser chamada de “método de medição primário de razões”. O padrão interno escolhido para o experimento é uma substância diferente da que está sendo analisada e que os sinais no espectro referente ao padrão não sobreponham aos da amostra.

O padrão interno utilizado na quantificação por RMN deve ser um material de referência certificado para que os resultados obtidos sejam rastreáveis ao SI. Os MRC são estudados extensivamente e apresentam em seu certificado informações como a incerteza de medição e como foi estabelecida a rastreabilidade metrológica dos valores certificados. O Inmetro vem desenvolvendo materiais de referência certificados de substâncias puras que podem ser usadas como padrões internos em ensaios de RMN. Por exemplo, tereftalato de dimetila, dimetilsulfona, hidrogenoftalato de potássio e ácido maleico[11].

Nem todos os experimentos de RMN são medições primárias. Para que os resultados de RMN sejam rastreáveis ao SI, diversos cuidados devem ser tomados no preparo da amostra e na aquisição dos espectros. A etapa da pesagem tem muito impacto nos resultados da RMN quantitativa. Tanto a amostra quanto o padrão interno devem ser pesados com muito cuidado para evitar erros no resultado, de preferência usando balanças de resolução alta para diminuir a incerteza de medição. O Inmetro publicou um guia para difundir a forma correta de obter resultados rastreáveis ao SI por RMN e fornecer informações sobre dos parâmetros adotados nas análises quantitativas[12].

Uma vez que a amostra foi preparada corretamente, a aquisição dos espectros de RMN já pode ser realizada. Os parâmetros utilizados nos experimentos quantitativos são um pouco diferentes daqueles usualmente empregados para espectros qualitativos. Com o experimento programado, o equipamento vai adquirir os espectros para cada amostra e depois é só processar os resultados.

Inúmeras são as vantagens da quantificação por RMN e algumas podem ser citadas, tais como: Identificação precisa das entidades moleculares, estabelecimento da estrutura molecular exata incluindo estereoquímica, menor erro, determinação do conteúdo absoluto ('medição') do analíto com base no sinal de RMN de próton (1H) apenas, eliminando assim o efeito de variações isotópicas em diferentes amostras, mais específico e preciso do que frações de pureza de massa e rastreabilidade para unidades SI[13].

Além disso, a técnica é aplicável a uma variedade de núcleos, como 19F, 31P, 17O, bem como 1H, tornando qNMR uma proposição atraente para a pureza avaliação de uma ampla gama de padrões de calibração orgânica[5].

RMN aplicado a análise de alimentos[editar | editar código-fonte]

A ressonância magnética nuclear (RMN) pode ser aplicada a uma ampla gama de matrizes líquidas e sólidas sem alterar a amostra ou produzir resíduos perigosos. Embora a sensibilidade e os limites de detecção do RMN ainda precisem ser melhorados, a técnica ainda tem várias vantagens em relação a outras ferramentas analíticas comuns, como cromatografia líquida de alta pressão (HPLC), cromatografia gasosa (GC) e espectrometria de massa (MS). A tecnologia de RMN foi usada inicialmente no final dos anos 1940 para elucidar a estrutura das moléculas na química orgânica [14]. No entanto, as diversas aplicações da espectroscopia na ciência de alimentos foram adiadas até a década de 1980, principalmente devido à falta de conhecimento científico, alto custo do equipamento e a ausência de peças projetadas especificamente para fins alimentares.

Com o desenvolvimento da instrumentação e programas aprimorados para coletar e analisar os dados, a aplicabilidade da técnica recentemente se expandiu rapidamente no campo da ciência e tecnologia de alimentos. Uma ampla gama de pesquisas relacionadas a alimentos, utilizando RMN, cobriu vários campos da ciência alimentar, incluindo microbiologia de alimentos, química de alimentos, engenharia de alimentos e embalagem de alimentos [15].

Hoje em dia, a análise de RMN é, muitas vezes, baseada no comportamento de núcleos ativos, ou seja, 1H, 13C que são os mais amplamente usados ​​para aplicações em alimentos) em um campo magnético e uma irradiação de radiofrequência (RF) pulsada. O relaxamento descreve um processo complexo dos núcleos desde a excitação, devido à divisão dos níveis de spin nuclear (efeito Zeeman) pelo campo magnético aplicado, ao equilíbrio [16].

Com base no princípio de RMN, a imagem por ressonância magnética permite ainda a observação visual do interior dos alimentos. A ressonância magnética oferece não apenas informações sobre a composição química e estrutura interna de certos alimentos, mas também permite o monitoramento da composição interna e modificação estrutural dos alimentos quando são submetidos a diferentes práticas agrícolas (ou seja, colheita, pós-colheita) e posse industrial. A técnica expandiu a capacidade das metodologias de classificação de qualidade em alimentos atualmente disponíveis on-line, que normalmente têm sido usadas apenas para monitorar propriedades externas, como cor, tamanho, forma ou defeitos externamente visíveis [17].

O progresso na pesquisa do uso de RMN em alimentos foi abordado em várias revisões recentes com um escopo limitado focando em aplicações em alimentos específicos, como vinho [18]; alimentos lácteos [19] ou aplicações específicas, como identificação de autenticidade alimentar e investigação das correlações entre distribuição e mobilidade de água, capacidade de retenção de água e qualidade da carne [20], ou avaliação ou inspeção dos parâmetros de qualidade das frutas [21].

É possível notar um crescimento exponencial no número de publicações sobre aplicações de RMN na ciência de alimentos na última década. No passado, o RMN foi aplicado majoritariamente em pesquisas básicas de química orgânica e biomoléculas [22], mas alcançou agora um nível de avanço que torna possível a aplicação em laboratórios de controle de alimentos de rotina e amostras complexas, como bebidas fermentadas, mel, água, peixes (contaminação por metal pesado, por exemplo), óleos como azeites, frutas, queijos, entre muitos outros. As técnicas de RMN possuem maior precisão experimental, pois garantem a estabilidade a longo prazo dos espectros, a comparação interna de espectros entre diferentes instrumentos e a falta de necessidade de padronização ou calibração interna. Além disso, uma replicação de amostras pode ser mesclado usando técnicas de RMN 1D e 2D, para fornecer uma faixa de distribuição de referência, que permite detectar imediatamente a adulteração se sinais inesperados de RMN fora da variação natural do produto [23]. Como exemplo de adulteração, são análises de mel adulterados com açúcares provenientes do melado de cana.

Com avanços instrumentais recentes, os níveis de precisão e exatidão atingíveis tornaram-se comparáveis, em alguns casos com maior precisão, aos de técnicas cromatográficas, permitindo que todo o potencial da técnica para análises quantitativas/qualitativa pudesse ser explorado [24].

A espectroscopia de RMN é a técnica espectroscópica mais versátil e informativa empregada em laboratórios modernos de pesquisa química e na área de alimentos. Desenvolvimentos modernos nessa técnica têm sido extremamente importantes para a pesquisa química e bioquímica. A espectroscopia de RMN, quando realizada em condições quantitativas, se fundamenta na premissa de que a área de um sinal atribuído a um núcleo excitado é proporcional ao número de moléculas a qual o núcleo faz parte. Como tal premissa é independente da molécula a qual o núcleo pertence, a técnica dispensa o uso de padrões de referência idênticos à substância em análise. A quantificação absoluta da amostra é viabilizada pela comparação entre as áreas dos sinais correspondentes a uma substância padrão, cuja concentração é conhecida e aquelas referentes a amostra, sendo desnecessária a construção de uma curva de calibração. O uso de referências eletrônicas em análises quantitativas de RMN foi introduzido para estudos em metabolômica e foi chamado de Electronic Reference to Assess In vivo Concentrations (ERETICTM) [25].

Mais tarde, considerando a necessidade do uso de instrumentação adicional externa na implementação da técnica ERETICTM, outro grupo introduziu uma técnica similar que foi chamada “determinação de concentração baseada na largura de pulso” (Pulse length based concentration determination – PULCON). Esse método prometia uma forma fácil de usar e robusta para a determinação de concentrações em procedimentos de rotina e, de fato, aplicações desse método comparado com formas clássicas de padronização têm mostrado que o mesmo oferece resultados tão bons quanto a padronização interna com uma pequena perda de precisão [26].

As principais vantagens dos métodos de padronização eletrônica são que para esses métodos não há necessidade de pesagem de um padrão interno, o que também elimina a possibilidade de interações indesejáveis entre a amostra e o padrão, problemas com a solubilidade do padrão interno na solução, e a possibilidade de se fazer diversas medidas utilizando-se apenas uma referência para cada sonda de RMN [26].

Além disso, espectros de amostras complexas são carregados de sinais e encontrar um padrão interno que cumpra todos os requisitos para preparo de amostras e ainda tenha sinais em uma região limpa do espectro nem sempre é uma tarefa simples e consiste em uma das principais limitações na determinação da pureza de compostos orgânicos por RMN [27].

Ver também[editar | editar código-fonte]

Referências[editar | editar código-fonte]

  1. a b c d e Jacobsen, Neil E. (10 de agosto de 2007). NMR Spectroscopy Explained (em inglês). Hoboken, NJ, USA: John Wiley & Sons, Inc. 
  2. Skoog, Douglas A.; Holler, F. James.; Crouch, Stanley R.; Grassi, Marco Tadeu, (2006). Fundamentos de química analítica 8. ed ed. São Paulo: Pioneira Thomson Learning. OCLC 69938980 
  3. Yip, Yiu-chung; Wong, Siu-kay; Choi, Sik-man (abril de 2011). «Assessment of the chemical and enantiomeric purity of organic reference materials». TrAC Trends in Analytical Chemistry (em inglês) (4): 628–640. doi:10.1016/j.trac.2010.12.003. Consultado em 21 de dezembro de 2020 
  4. Tangpaisarnkul, Nongluck; Tuchinda, Patoomratana; Wilairat, Prapin; Siripinyanond, Atitaya; Shiowattana, Juwadee; Nobsathian, Saksit (30 de julho de 2018). «Development of pure certified reference material of stevioside». Food Chemistry (em inglês): 75–80. ISSN 0308-8146. doi:10.1016/j.foodchem.2018.02.029. Consultado em 21 de dezembro de 2020 
  5. a b Davies, Stephen R.; Jones, Kai; Goldys, Anna; Alamgir, Mahuiddin; Chan, Benjamin K. H.; Elgindy, Cecile; Mitchell, Peter S. R.; Tarrant, Gregory J.; Krishnaswami, Maya R. (abril de 2015). «Purity assessment of organic calibration standards using a combination of quantitative NMR and mass balance». Analytical and Bioanalytical Chemistry (em inglês) (11): 3103–3113. ISSN 1618-2642. doi:10.1007/s00216-014-7893-6. Consultado em 21 de dezembro de 2020 
  6. Luan, Jiaqi; Feng, Rui; Yu, Chen; Wu, Xuri; Shen, Wenbin; Chen, Yijun; Di, Bin; Su, Mengxiang (10 de setembro de 2018). «Quantitative Assessment of the Absolute Purity of Thiopeptcin Reference Standard by 1H-NMR». Analytical Sciences (em inglês) (9): 1093–1098. ISSN 0910-6340. doi:10.2116/analsci.18P095. Consultado em 21 de dezembro de 2020 
  7. a b Melanson, Jeremy E.; Thibeault, Marie-Pier; Stocks, Bradley B.; Leek, Donald M.; McRae, Garnet; Meija, Juris (1 de outubro de 2018). «Purity assignment for peptide certified reference materials by combining qNMR and LC-MS/MS amino acid analysis results: application to angiotensin II». Analytical and Bioanalytical Chemistry (em inglês) (26): 6719–6731. ISSN 1618-2650. doi:10.1007/s00216-018-1272-7. Consultado em 21 de dezembro de 2020 
  8. Miura, Toru; Sugimoto, Naoki; Bhavaraju, Sitaram; Yamazaki, Taichi; Nishizaki, Yuzo; Liu, Yang; Bzhelyansky, Anton; Amezcua, Carlos; Ray, Joseph (1 de setembro de 2020). «Collaborative Study to Validate Purity Determination by 1H Quantitative NMR Spectroscopy by Using Internal Calibration Methodology». Chemical and Pharmaceutical Bulletin (em inglês) (9): 868–878. ISSN 0009-2363. doi:10.1248/cpb.c20-00336. Consultado em 21 de dezembro de 2020 
  9. a b Beyer, Tanja; Diehl, Bernd; Holzgrabe, Ulrike (dezembro de 2010). «Quantitative NMR spectroscopy of biologically active substances and excipients». Bioanalytical Reviews (em inglês) (1-4): 1–22. ISSN 1867-2086. doi:10.1007/s12566-010-0016-8. Consultado em 21 de dezembro de 2020 
  10. a b Hays, Patrick A. (2005). «Proton Nuclear Magnetic Resonance Spectroscopy (NMR) Methods for Determining the Purity of Reference Drug Standards and Illicit Forensic Drug Seizures». Journal of Forensic Sciences (em inglês) (6): 1–19. ISSN 0022-1198. doi:10.1520/JFS2005124. Consultado em 21 de dezembro de 2020 
  11. «Solicitação de Material de Referência Certificado (MRC)». Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro). Consultado em 12 de Dezembro de 2020 
  12. Wollinger, W, Garrido, Bruno. «Calibração em RMNq: Guia para obter resultados rastreáveis ao sistema internacional de unidades (SI)». Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro). Consultado em 12 de Dezembro de 2020 
  13. Taibon, Judith; van Rooij, Milou; Schmid, Rupert; Singh, Neeraj; Albrecht, Eva; Anne Wright, Jo; Geletneky, Christian; Schuster, Carina; Mörlein, Sophie (agosto de 2020). «An isotope dilution LC-MS/MS based candidate reference method for the quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human whole blood». Clinical Biochemistry (em inglês): 73–84. doi:10.1016/j.clinbiochem.2019.11.006. Consultado em 21 de dezembro de 2020 
  14. Gutowsky, H. S.; Kistiakowsky, G. B.; Pake, G. E.; Purcell, E. M. (outubro de 1949). «Structural Investigations by Means of Nuclear Magnetism. I. Rigid Crystal Lattices». The Journal of Chemical Physics (10): 972–981. ISSN 0021-9606. doi:10.1063/1.1747097. Consultado em 16 de janeiro de 2021 
  15. Belton, P.S.; Engelsen, S.B.; Jakobsen, H.J. (eds.). «Front Matter». Cambridge: Royal Society of Chemistry: P001–P004. ISBN 978-0-85404-648-5. Consultado em 16 de janeiro de 2021 
  16. Novoa-Carballal, Ramon; Fernandez-Megia, Eduardo; Jimenez, Carlos; Riguera, Ricardo (2011). «NMR methods for unravelling the spectra of complex mixtures». Nat. Prod. Rep. (1): 78–98. ISSN 0265-0568. doi:10.1039/c005320c. Consultado em 16 de janeiro de 2021 
  17. Chayaprasert, Watcharapol; Stroshine, Richard (junho de 2005). «Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor». Postharvest Biology and Technology (3): 291–301. ISSN 0925-5214. doi:10.1016/j.postharvbio.2005.02.006. Consultado em 16 de janeiro de 2021 
  18. Ogrinc, N.; Košir, I. J.; Spangenberg, J. E.; Kidrič, J. (27 de março de 2003). «The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review». Analytical and Bioanalytical Chemistry (4): 424–430. ISSN 1618-2642. doi:10.1007/s00216-003-1804-6. Consultado em 16 de janeiro de 2021 
  19. Mariette, F. (junho de 2009). «Investigations of food colloids by NMR and MRI». Current Opinion in Colloid & Interface Science (3): 203–211. ISSN 1359-0294. doi:10.1016/j.cocis.2008.10.006. Consultado em 16 de janeiro de 2021 
  20. Pearce, Kelly L.; Rosenvold, Katja; Andersen, Henrik J.; Hopkins, David L. (outubro de 2011). «Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes — A review». Meat Science (2): 111–124. ISSN 0309-1740. doi:10.1016/j.meatsci.2011.04.007. Consultado em 16 de janeiro de 2021 
  21. Butz, Peter; Hofmann, Claudia; Tauscher, Bernhard (31 de maio de 2006). «Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetable Internal Quality Analysis». Journal of Food Science (9): R131–R141. ISSN 0022-1147. doi:10.1111/j.1365-2621.2005.tb08328.x. Consultado em 16 de janeiro de 2021 
  22. Lolli, Massimo; Bertelli, Davide; Plessi, Maria; Sabatini, Anna Gloria; Restani, Cinzia (fevereiro de 2008). «Classification of Italian Honeys by 2D HR-NMR». Journal of Agricultural and Food Chemistry (4): 1298–1304. ISSN 0021-8561. doi:10.1021/jf072763c. Consultado em 16 de janeiro de 2021 
  23. Wong, Kenneth C. (4 de agosto de 2015). «Review of Spectrometric Identification of Organic Compounds, 8th EditionSpectrometric Identification of Organic Compounds, 7th edition by Robert M. Silverstein, Francis X. Webster, David J. Kiemle, and Robert L.Bryce. John Wiley and Sons: Hoboken, NJ, 2015. viii + 455 pp. ISBN 978-0-470-61637-6 (paperback). $190.42». Journal of Chemical Education (10): 1602–1603. ISSN 0021-9584. doi:10.1021/acs.jchemed.5b00571. Consultado em 16 de janeiro de 2021 
  24. De Carvalho, Márcio J. R. (12 de junho de 2018). «Editorial». Em Tese (1): 01–02. ISSN 1806-5023. doi:10.5007/1806-5023.2018v15n1p1. Consultado em 16 de janeiro de 2021 
  25. Barantin, Laurent; Pape, Alain Le; Akoka, Serge (agosto de 1997). «A new method for absolute quantitation MRS metabolites». Magnetic Resonance in Medicine (2): 179–182. ISSN 0740-3194. doi:10.1002/mrm.1910380203. Consultado em 16 de janeiro de 2021 
  26. a b Cullen, Christopher H.; Ray, G. Joseph; Szabo, Christina M. (setembro de 2013). «A comparison of quantitative nuclear magnetic resonance methods: internal, external, and electronic referencing». Magnetic Resonance in Chemistry: n/a–n/a. ISSN 0749-1581. doi:10.1002/mrc.4004. Consultado em 16 de janeiro de 2021 
  27. Wider, Gerhard; Dreier, Lars (março de 2006). «Measuring Protein Concentrations by NMR Spectroscopy». Journal of the American Chemical Society (8): 2571–2576. ISSN 0002-7863. doi:10.1021/ja055336t. Consultado em 16 de janeiro de 2021 

Ligações externas[editar | editar código-fonte]