Número de Prandtl turbulento

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

O número de Prandtl turbulento () é um termo adimensional definido como a razão entre o momento difusividade turbulenta e a difusividade turbulenta de transferência de calor. É útil para resolver o problema da transferência de calor por convecção de fluxos de camada limite turbulenta. O mais simples modelo para é a analogia de Reynolds, a qual resulta um número de Prandtl turbulento de 1. De dados experimentais, tem uma média de 0,85 , mas varia de 0,7 a 0,9 dependendo do número de Prandtl do fluido em quatão.

Definição[editar | editar código-fonte]

A introdução da difusividade turbulenta e subsequentemente o número de Prandtl turbulento funciona como um meio de se definir uma relação simples entre a tensão extra de cisalhamento e fluxo de calor que está presente em um fluxo turbulento. Se o momento e coeficientes de difusão térmica são nulos (sem tensão de cisalhamento aparente e fluxo de calor turbulento), então as equações de fluxo turbulento reduzem-se a equações laminares. Podemos definir os coeficientes de difusão para a transferência de momento e transferência de calor

as
and

onde é a tensão de cisalhamento turbulento aparente e é o fluxo de calor turbulento aparente.
O número de Prandtl turbulento é então definido como

Aplicação[editar | editar código-fonte]

A equação da camada limite de momento turbulento:

A equação da camada limite térmica turbulenta,

Substituindo as difusividades turbulentas nas equações de momento e térmica obtem-se

e

Substituindo na equação termal usando a definição do número de Prandtl turbulento, tem-se

Consequências[editar | editar código-fonte]

No caso especial onde o número de Prandtl e número de Prandtl turbulento são ambos iguais a um (como na analogia de Reynolds), os perfis de velocidade e temperaturas são idênticos. Isso simplifica bastante a solução do problema de transferência de calor.[1] Se o número de Prandtl e o número de Prandtl turbulento não são iguais a um, a solução ainda é simplificada, porque por conhecer-se as propriedades do fluido, mas apenas a difusividade turbulenta de momento, ainda se pode resolver o momento e as equações térmicas.

Em um caso geral de turbulência tri-dimensional, o conceito de viscosidade turbulenta e difusividade turbulenta não são válidos. Consequentemente, o número de Prandtl turbulento não tem nenhum significado.[2]

Referências

  1. Atila P. Silva Freire, Anderson Ilha, Marcelo J. Colaço; Turbulência: Anais da V Escola de Primavera em Transição e Turbulência; Rio de Janeiro, 25 a 29 de setembro de 2006; ISBN (10 díg.): 85-85769-24-6; ISBN (13 díg.): 978-85-85769-24-6
  2. William M. Kays; Turbulent Prandtl Number—Where Are We?; J. Heat Transfer, May 1994, Volume 116, Issue 2, 284 (12 pages); doi:10.1115/1.2911398
  • Kays, William; Crawford, M., Weigand, B. (2005). Convective Heat and Mass Transfer, Fourth Edition McGraw-Hill [S.l.] ISBN 978-0072468762. 

Ver também[editar | editar código-fonte]