Mapas de Kohonen

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Este artigo não cita fontes fiáveis e independentes. (desde fevereiro de 2014). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

O algoritmo de Kohonen foi desenvolvido por Teuvo Kohonen em 1982, sendo considerado relativamente simples e com a capacidade de organizar dimensionalmente dados complexos em grupos (clusters), de acordo com suas relações. Este método solicita apenas os parâmetros de entrada, mostrando-se ideal para problemas onde os padrões são desconhecidos ou indeterminados.

Este algoritmo é considerado um mapa auto-organizável (da sigla SOM, Self-organized map, em inglês), capaz de diminuir a dimensão de um grupo de dados, conseguindo manter a representação real com relação as propriedades relevantes dos vetores de entrada, tendo-se como resultado um conjunto das características do espaço de entrada.

Além disso, possui a propriedade de transformar um mapa multidimensional em bidimensional, adicionando os elementos ao novo mapa de tal forma que os objetos similares sejam posicionados próximos uns dos outros.

Apresenta duas importantes características: utiliza aproximação dos pontos similares onde os mesmos são processados separadamente e permite ao mapa obter centros em um plano bidimensional disponibilizando uma visualização facilmente compreensível.

O algoritmo de Kohonen ordena os objetos i, frequentemente organizados em uma grade retangular, atribuindo-os ao vetor modelo, denominado mi, no espaço multidimensional. Cada item xk é mapeado para a unidade do mapa ck mais adequada, conforme a menor distância entre mi e xk definida pela fórmula [2]: ck = argmin i xk – mi

Este algoritmo utiliza o método de aprendizagem por competição (competitive learning), considerado o mais comum nas RNA auto-organizáveis, permitindo que aconteça o aprendizado dividindo-se os padrões de entrada dos dados em conjuntos inseparáveis. Este método avalia os neurônios de saída da rede de maneira que ocorra uma competição entre eles, tendo-se como resultado o neurônio que possui maior ativação. A rede neural de Kohonen é composta por duas camadas: a de entrada e de Kohonen. Cada nó da camada de entrada tem a função de distribuir os valores padrões para a de Kohonen, que é um conjunto de nodos organizados de forma tabular. O vetor de entrada possui seus elementos conectados com cada nó da camada Kohonen por meio de ligações, as quais são responsáveis por manterem atualizados os valores durante o processo de treinamento da RNA.

Ícone de esboço Este artigo sobre programação de computadores é um esboço. Você pode ajudar a Wikipédia expandindo-o.