Resto da divisão inteira

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita nenhuma fonte ou referência, o que compromete sua credibilidade (desde Março de 2013).
Por favor, melhore este artigo providenciando fontes fiáveis e independentes, inserindo-as no corpo do texto por meio de notas de rodapé. Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.

Na matemática, nem sempre o resultado de uma divisão entre dois inteiros pode ser representado por um quociente inteiro a menos que seja explicitado também o resto da divisão inteira. Este resto é o valor que sobra da divisão para que o quociente permaneça um inteiro.

Exemplo: 23 / 7 = 3 + 2 / 7.

O resto da divisão inteira pode ser utilizado, por exemplo, para determinar se um número é par ou ímpar: se o resto da divisão inteira por 2 for 0, então o número é par, ou ímpar caso contrário.

Caso dos Inteiros em Geral[editar | editar código-fonte]

Se a e d são inteiros, com d diferente de zero, então um resto é um inteiro r tal que a = qd + r para certo inteiro q, e com 0 ≤ |r| < |d|.

Quando definido desta forma, aparecem dois possíveis restos. Por exemplo, a divisão de −42 por −5 pode ser expressa de duas formas

−42 = 9×(−5) + 3

ou

−42 = 8×(−5) + (−2).

Assim o resto pode então ser tanto 3 como −2.

Esta ambiquidade no valor do resto não é muito importante; no caso acima, o resto negativo é obtido a partir do positivo subtraindo de 5 o resto positivo, que é d. Isto mantém-se no caso geral. Quando se divide por d, se o resto positivo é r1, e o resto negativo é r2, então

r1 = r2 + d.