Lógica intermediária
Na lógica matemática, a lógica superintuicionista é a lógica proposicional estendendo a lógica intuicionista. Lógica clássica é a lógica superintuicionista consistente mais forte; assim, a lógica superintuicionista consistente é chamada de lógica intermediária (a lógica é intermediária entre lógica intuicionista e a lógica clássica).
Definição
[editar | editar código-fonte]A lógica superintuicionista é um conjunto L de fórmulas proposicionais sobre um conjunto contável de variáveis pi satisfazendo as seguintes propriedades:
- 1. todos axiomas da lógica intuicionista pertence a L;
- 2. se F e G são fórmulas tal que F e F → G pertencem a L, logo G também pertence a L (fechado sob modus ponens);
- 3. se F(11p111, p2, ..., pn) é a fórmula de L, e G1, G2, ..., Gn são fórmulas quaisquer, então F(G1, G2, ..., Gn) pertence a L (fechado sob substituição).
Essa fórmula será intermediária se além disso
- 4. L não for o conjunto de todas as fórmulas.
Propriedades e exemplos
[editar | editar código-fonte]Existe um contínuo de diferentes lógicas intermediárias. Lógicas intermediárias específicas são muitas vezes construídas por adição de um ou mais axiomas à lógica intuicionista, ou por uma descrição semântica. Exemplos de lógica intermediária incluem:
- lógica intuicionista(IPC, Int, IL, H)
- lógica clássica (CPC, Cl, CL): IPC + p ∨ ¬p = IPC + ¬¬p → p = IPC + ((p → q) → p) → p
- a lógica da lei do terceiro excluído (KC, lógica de Jankov, lógica de De Morgan [1]): IPC + ¬¬p ∨ ¬p
- lógica de Gödel–Dummett (LC, G): IPC + (p → q) ∨ (q → p)
- lógica de Kreisel–Putnam(KP): IPC + (¬p → (q ∨ r)) → ((¬p → q) ∨ (¬p → r))
- lógica de problemas finitos de Medvedev (LM, ML): definido semanticamente como a lógica de todas estruturas da forma para conjuntos finitos X ("Booleano 'hypercubes' sem topo"), Desde 2010[update] não conhecida por ser recursivamente axiomatizada.
- lógica da realizabilidade
- lógica de Scott (SL): IPC + ((¬¬p → p) → (p ∨ ¬p)) → (¬¬p ∨ ¬p)
- lógica de Smetanich (SmL): IPC + (¬q → p) → (((p → q) → p) → p)
- lógica da cardinalidade limitada (BCn):
- lógica da largura limitada, também conhecida como a delimitada 'anti-cadeias' (BWn, BAn):
- lógica de profundidade limitada (BDn): IPC + pn ∨ (pn → (pn−1 ∨ (pn−1 → ... → (p2 ∨ (p2 → (p1 ∨ ¬p1)))...)))
- lógica de largura superior limitada BTWn):
- lógica de ramificação limitada (Tn, BBn):
- lógica n-valorada de Gödel(Gn): LC + BCn−1 = LC + BDn−1
Lógica superintuicionista ou intermediária formam um reticulado completo com lógica intuicionista como a bottom e a lógica inconsistente (no caso de lógica super-intuicionista) ou lógica clássica (no caso de lógica intermediária) como o topo. Lógica clássica é co-átomo na grade da lógica superintuicionista; o reticulado das lógica intermediárias também tem um único co-átomo, denominado SmL.
As ferramentas para estudo da lógica intermediária são similares aos usados para a lógica intuicionista, tal como a semântica de Kripke. Por exemplo, lógica de Gödel–Dummett tem uma caracterização semântica simples em termos de ordem total.
Semânticas
[editar | editar código-fonte]Dada a álgebra de Heyting H, o conjunto de fórmulas proposicionais que são válidas em H é uma lógica intermediária. Por outro lado, dada a lógica intermediária é possível a construção da álgebra de Lindenbaum que é uma álgebra de Heyting.
Uma estrutura Kripke intuicionista F é o conjunto parcialmente ordenado, e o modelo Kripke M é a estrutura de Kripke com valoração tal qual é um segmento inicial de F. O conjunto de fórmulas proposicional que são válidos em F são lógica intermediária. Dada a lógica intermediária L é possível construir um modelo Kripke M tal qual a lógica de M é L (essa construção é chamada modelo canônico). A estrutura de Kripke com essa propriedade pode não existir, mas uma estrutura geral sempre existe.
Relação com lógicas modais
[editar | editar código-fonte]Seja A uma fórmula proposicional. A tradução de Gödel–Tarski de A é definida recursivamente como:
Se M é a Lógica_modal estendendo a S4 então ρM = {A | T(A) ∈ M} é uma lógica super-intuicionista, e M é chamada de acompanhamento modal' de ρM. Em particular:
- IPC = ρS4
- KC = ρS4.2
- LC = ρS4.3
- CPC = ρS5
Para cada lógica intermediária L existem várias lógicas modais M tal qual L = ρM.
Referências
[editar | editar código-fonte]- ↑ Constructive Logic and the Medvedev Lattice,Sebastiaan A. Terwijn, Notre Dame J. Formal Logic, Volume 47, Number 1 (2006), 73-82.
- Toshio Umezawa. On logics intermediate between intuitionistic and classical predicate logic. Journal of Symbolic Logic, 24(2):141–153, June 1959.
- Alexander Chagrov, Michael Zakharyaschev. Modal Logic. Oxford University Press, 1997.