Trissectriz de Maclaurin

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
A trissectriz de Maclaurin com a propriedade da trissecção de um ângulo.

Em geometria, a trissectriz de Maclaurin é uma curva plana cúbica notável por sua propriedade trissectriz, isto é, ela pode ser utilizada para trissecionar ângulos. Tal propriedade pode ser definida como o lugar geométrico dos pontos de interseção de duas retas, cada uma girando a uma velocidade uniforme sobre pontos distintos, de tal forma que a relação entre as taxas de rotação é de 1/3 e as retas inicialmente coincidem com a reta divisória entre os dois pontos. A generalização deste tipo de construção é chamada sectriz de Maclaurin. O nome da curva foi dado em homenagem a Colin Maclaurin que a investigou em 1742.

Equações[editar | editar código-fonte]

Considere duas retas que giram em torno dos pontos e de modo que quando a reta sobre forma um ângulo com o exo x, a reta sobre forma um ângulo . Seja o ponto da intersecção. Então o ângulo formado pelas retas em é . Pela lei dos senos,

de modo que a equação em coordenadas polares é (sob uma translação e rotação)

.

Assim, a curva pertence à família das concóides de Sluze.

Em coordenadas cartesianas, sua equação é

.

Se a origem é transladada para (a, 0), então uma dedução semelhante à acima mostra que a equação da curva em coordenadas polares se torna

O que a torna um exemplo de epispiral.

A propriedade da trissecção[editar | editar código-fonte]

Dado um ângulo , desenhemos um raio de circunferência no ponto , cujo ângulo com o eixo é . Desenhemos um raio de circunferência na origem até o ponto onde o primeiro raio de circunferência intersecta a curva. Então, através do gráfico da curva, o ângulo entre o segundo raio e o eixo é .

Principais pontos e características[editar | editar código-fonte]

A curva intercepta o eixo x em em , além de um ponto duplo na origem. A reta vertical é uma assíntota. A curva intersecta a reta x = a (o ponto correspondente à trissecção de um ângulo reto) em . Como toda cúbica nodal, a curva possui ordem zero.

Relação com outras curvas[editar | editar código-fonte]

A trissectriz de Maclaurin pode ser definida a partir de secções cônicas de três maneiras. Especificamente:

.
e à reta em relaçao à origem.
.

Além disso:

Referências[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]