Extração de conhecimento

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Extração de conhecimento (também conhecido como processo KDD, do inglês knowledge-discovery in databases) é um processo de extração de informações de base de dados, que cria relações de interesse que não são observadas pelo especialista no assunto, bem como auxilia a validação de conhecimento extraído.

O crescimento rápido do volume das bases de dados em tamanho e dimensionalidade criou a necessidade e a oportunidade para extrair conhecimento destas. Neste contexto, surge no final da década de 1980, um novo ramo da computação, a extração de conhecimento, com o objetivo principal de encontrar uma maneira automatizada de explorar essas bases de dados e reconhecer os padrões existentes através da modelagem de fenômenos do mundo real.

A extração de conhecimento refere-se às etapas que produzem conhecimentos a partir de dados relacionados, e sua principal característica é a extração não-trivial de informações implicitamente contidas em uma base de dados. Essas informações são de difícil detecção por métodos tradicionais de análise e devem ser potencialmente úteis para tomada de decisão. Enquanto os métodos tradicionais são capazes de tratar apenas as informações explícitas, a extração de conhecimento é capaz de detectar informações implícitas armazenadas nos bancos de dados.

O processo é iterativo e, embora apresente uma definição semelhante também ao mineração de dados, deve ser composto de uma série de etapas seqüenciais, podendo haver retorno a etapas anteriores, isto é, as descobertas realizadas (ou a falta delas). Eventualmente, este processo conduz a novas hipóteses e descobertas. Neste caso, o usuário pode decidir pela retomada dos processos de mineração, ou uma nova seleção de atributos, por exemplo, para validar as hipóteses que surgiram ao longo do processo.

O produto esperado da extração de conhecimento é uma informação relevante para ser utilizada pelos tomadores de decisão. Alguns autores, porém, defendem o ponto de vista de que o conhecimento descoberto não precisa necessariamente ser incorporado a um sistema de apoio à decisão (SAD).

O campo de estudo é de interesse comum a diversas áreas, e as primeiras contribuições científicas e técnicas foram apresentadas por pesquisadores de áreas como: aprendizado de máquinas; banco de dados inteligente; computação de alto desempenho; estatística; inteligência artificial; visualização de dados; reconhecimento de padrões e sistemas especialistas. Foram desenvolvidas aplicações também para astronomia, biologia, seguros, marketing, medicina, entre outros.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre Informática é um esboço. Você pode ajudar a Wikipédia expandindo-o.