Astroide

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Disambig grey.svg Nota: Não confundir com Asteroide.
Um astroide.
A construção do astroide.
O astroide sendo representado como um envelope comum de uma família de elipses traçadas, onde a + b = const.

Um astroide é um tipo específico de curva matemática: uma hipocicloide com quatro vértices. Especificamente, é o lugar geométrico de um ponto num círculo que gira quatro vezes dentro de um círculo fixo num raio.[1][2] Pela geratriz dupla, é também o lugar geométrico de um ponto num círculo, na medida em que gira dentro de um círculo fixo com o raio em 4/3 vezes. Pode igualmente ser definido como uma envoltória de um segmento de reta com um ponto de extremidade em cada um dos eixos. Por conseguinte, é a envoltória da barra móvel do Tresmalho de Arquimedes.

O nome contemporâneo deriva da palavra grega que significa "estrela". Originalmente, foi proposto na forma de "Astrois", pelo astrónomo austríaco Joseph Johann von Littrow em 1838.[3][4] A curva possui vários nomes, que incluem tetracúspide (ainda utilizado), cubocicloide, e paraciclo. É praticamente similar à evoluta de uma elipse.

Equações[editar | editar código-fonte]

Se o raio do círculo fixo for a, então a equação é feita por:[1]

Isto implica que um astroide é também uma superelipse.

As equações paramétricas são:

Uma equação pedal em relação à origem é:

A equação de Whewell é:

E a equação de Cesàro é:

A equação polar é:[5]

O astroide é um lugar geométrico real de uma curva algébrica plana de género zero. Tem a seguinte equação:[6]

O astroide é portanto uma curva algébrica real de sexto grau.

Derivação da equação polinomial[editar | editar código-fonte]

A equação polinomial pode ser derivada da equação de Leibniz através da álgebra elementar:

Em ambos os lados do cubo:

Em ambos os lados do cubo de novo:

Mas desde que:

Siga assim:

Sendo:

ou:

Propriedades métricas[editar | editar código-fonte]

Uma área envolvente[1]
Comprimento da curva
O volume da superfície de revolução da área envolvente sobre o eixo x.
A área da superfície de revolução sobre o eixo x

Propriedades[editar | editar código-fonte]

O astroide tem quatro vértices nas singularidades do plano real, os pontos da estrela. Possui mais duas singularidades complexas na infinidade, e quatro pontos duplos complexos, tendo um total de dez singularidades.

A curva dupla relativa ao astroide é a curva cruciforme, com a equação: A evoluta de um astroide é duas vezes maior.

Ver também[editar | editar código-fonte]

Referências

  1. a b c Yates, R.C. (1952). «Astroid». A Handbook on Curves and Their Properties (em inglês). Ann Arbor, MI: J. W. Edwards. p. 1 ff. 
  2. Nunes, Paulo (1 de dezembro de 2015). «Astroide». Knoow.net 
  3. Littrow, Joseph Johann von (1838). «§99. Die Astrois». Kurze Anleitung zur gesammten Mathematik (em alemão). Viena: [s.n.] p. 299 
  4. Loria, Gino (1902). Spezielle algebraische und transscendente ebene kurven. Theorie und Geschichte (em alemão). Lípsia: [s.n.] p. 224 
  5. Weisstein, Eric W. «Astroid» (em inglês). MathWorld 
  6. «Astroid ∗» (PDF) (em inglês). Xah Code. p. 3. Consultado em 11 de março de 2019 
  • Lawrence, J. Dennis (1972). A catalog of special plane curves (em inglês). [S.l.]: Dover Publications. p. 4–5,34–35,173–174. ISBN 0-486-60288-5 
  • D, Wells (1991). The Penguin Dictionary of Curious and Interesting Geometry (em inglês). Nova Iorque: Penguin Books. p. 10–11. ISBN 0-14-011813-6 

Ligações externas[editar | editar código-fonte]

O Commons possui uma categoria contendo imagens e outros ficheiros sobre Astroide