Equação de Bernoulli

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

A equação original[editar | editar código-fonte]

A forma original, que é para um fluxo incompressível sob um campo gravitacional uniforme (como o encontrado na Terra em pequenas altitudes), é:

 { v^2 \over 2 } + gh + { p \over \rho } = \mbox{constante} ou  { \rho \ v^2 \over 2 } + \rho gh + { p } = \mbox{constante}
v = velocidade do fluido ao longo do conduto
g = aceleração da gravidade
h = altura em relação a um referencial
p = pressão ao longo do recipiente
\rho = massa específica do fluido

As seguintes convenções precisam ser satisfeitas para que a equação se aplique:

  • Escoamento sem viscosidade ("fricção" interna = 0)
  • Escoamento em regime permanente
  • Escoamento incompressível (\rho constante em todo o escoamento)
  • Geralmente, a equação vale a um conduto como um todo. Para fluxos de potencial de densidade constante, ela se aplica a todo o campo de fluxo.

A redução na pressão que ocorre simultaneamente com um aumento na velocidade, como previsível pela equação, é frequentemente chamado de princípio de Bernoulli.

A equação é dedicada a Daniel Bernoulli, embora tenha sido apresentada pela primeira vez da forma como está aí por Leonhard Euler.

A equação para fluidos compressíveis[editar | editar código-fonte]

Uma segunda forma, mais geral, da equação de Bernoulli pode ser escrita para fluidos compressíveis:

{ v^2 \over 2 } + \phi + w = \mbox{constante}

Aqui, \phi é a energia potencial gravitacional por unidade de massa, que vale apenas \phi = gh no caso de um campo gravitacional uniforme, e w é a entalpia do fluido por unidade de massa. Observe que w = \epsilon + {p \over \rho} onde \epsilon é a energia termodinâmica do fluido por unidade de massa, também conhecida como energia interna específica ou sie.

A constante no lado direito da equação é frequentemente chamada de constante de Bernoulli e indicada pela letra "b". Para o escoamento adiabático sem viscosidade e sem nenhuma fonte adicional de energia, "b" é constante ao longo de todo o escoamento. Mesmo nos casos em que "b" varia ao longo do conduto, a constante ainda prova-se bastante útil, porque está relacionada com a carga de pressão no fluido.

Quando uma onda de choque está presente, deve-se notar que um referencial move-se conjuntamente (comove-se) com uma onda de choque, muitos dos parâmetros envolvidos na equação de Bernoulli sofrem grandes modificações ao passar pela onda de choque. A constante de Bernoulli, porém, não se altera. A única exceção a essa regra são os choques radioativos, que violam as convenções que levam à equação de Bernoulli, como a falta de vazões ou fontes de energia.

Dedução[editar | editar código-fonte]

Um duto com fluido movendo-se para a direita. Estão indicados a pressão, a altura, a velocidade, a distância (s) e a área da seção transversal.

Vamos começar com a equação de Bernoulli para fluidos incompressíveis.

A equação pode ser obtida pela integração das equações de Euler, ou pela aplicação da lei da conservação da energia em duas seções ao longo da corrente, e desprezando a viscosidade, a compressibilidade e os efeitos térmicos. Pode-se dizer que

o trabalho mecânico feito pelas forças no fluido + redução na energia potencial = aumento na energia cinética.

O trabalho feito pelas forças é

F_{1} s_{1}-F_{2} s_{2}=p_{1} A_{1} v_
{1}\Delta t-p_{2} A_{2} v_{2}\Delta t. \;

A diminuição da energia potencial é

m g h_{1}-m g h_{2}=\rho g A
_{1} v_{1}\Delta t h_{1}-\rho g A_{2} v_{2} \Delta
t h_{2}. \;

O aumento na energia cinética é

\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=\frac{1}{2}\rho A_{2} v_{2}\Delta t v_{2}
^{2}-\frac{1}{2}\rho A_{1} v_{1}\Delta t v_{1}^{2}.

Juntando tudo, tem-se que

p_{1} A_{1} v_{1}\Delta t-p_{2} A_{2} v_{2}\Delta t+\rho g A_{1} v_{1}\Delta t h_{1}-\rho g A_{2} v_{2}\Delta t h_{2}=\frac{1}{2}\rho A_{2} v_{2}\Delta t v_{2}^{2}-\frac{1}{2}\rho A_{1} v_{1}\Delta t v_{1}^{2}

ou

\frac{\rho A_{1} v_{1}\Delta t v_{1}^{
2}}{2}+\rho g A_{1} v_{1}\Delta t h_{1}+p_{1} A_{1
} v_{1}\Delta t=\frac{\rho A_{2} v_{2}\Delta t v_{
2}^{2}}{2}+\rho g A_{2} v_{2}\Delta t h_{2}+p_{2}
A_{2} v_{2}\Delta t.

Depois da divisão por \Delta t, \rho e A_{1} v_{1} (= vazão = A_{2} v_{2} já que o fluido é incompressível), encontra-se:

\frac{v_{1}^{2}}{2}+g h_{1}+\frac{p_{1}}{\rho}=\frac{v_{2}^{2}}{2}+g h_{2}+\frac{p_{2}}{\rho}

ou \frac{v^{2}}{2}+g h+\frac{p}{\rho}=C (como dito na Introdução).

A divisão adicional por g implica

\frac{v^{2}}{2 g}+h+\frac{p}{\rho g}=C.

Uma massa em queda livre de uma altura h (no vácuo), alcançará uma velocidade

v=\sqrt{{2 g}{h}}, ou h=\frac{v^{2}}{2 g}.

O termo \frac{v^2}{2 g} é chamado de altura de aceleração ou carga de aceleração.

A pressão hidrostática, carga estática ou altura estática é definida como

p=\rho  g  h \;\! ou h=\frac{p}{\rho  g}.

O termo \frac{p}{\rho  g} é também chamado de altura de pressão ou carga de pressão.

Uma maneira de ver como isto se relaciona com a conservação de energia diretamente é pela multiplicação pela densidade e volume unitário (que é permitido, já que ambos são constantes), resultando em:

v^2 \rho + P = \mbox{constante} \;\! e
mV^2 + P \times \mbox{volume} = \mbox{constante} \;\!

A dedução para fluidos compressíveis é similar. Novamente, a dedução depende da (1) conservação da massa e (2) da conservação da energia.

A conservação da massa implica que no desenho acima, no intervalo de tempo  \Delta t , a quantidade de massa que passa pela fronteira definida pela área  A_1 é igual à quantidade de massa que passa por fora da fronteira definida pela área  A_2 :

 0 = \Delta M_1 - \Delta M_2 = \rho_1 A_1 v_1 \, \Delta t - \rho_2 A_2 v_2 \, \Delta t .

Aplica-se a conservação da energia de uma maneira similar: assume-se que a mudança na energia do volume do duto limitado por  A_1 e  A_2 é totalmente devida à energia que entra ou sai por quaisquer uma dessas duas fronteiras. Claramente, em uma situação mais complicada como uma vazão de fluido acompanhada de radiação, a conservação de energia não é satisfeita. De qualquer forma, assuma que seja este o caso e que o fluxo está em estado estacionário, de forma que a mudança líquida de energia é zero; temos que

 0 = \Delta E_1 - \Delta E_2 \;\!

onde  \Delta E_1 e  \Delta E_2 são a energia que entra através de  A_1 e que sai por  A_2 , respectivamente.

A energia entrando por  A_1 é a soma da energia cinética afluente, da energia afluente na forma de energia potencial gravitacional, da energia termodinâmica do fluido afluente e da energia afluente na forma de trabalho mecânico  p\,dV :

 \Delta E_1 = \left[  \frac{1}{2} \rho_1 v_1^2 + \phi_1 \rho_1 + \epsilon_1 \rho_1  + p_1 \right] A_1 v_1 \, \Delta t

Uma expressão similar para  \Delta E_2 pode ser construída facilmente. Fazendo agora  0 = \Delta E_1 - \Delta E_2 \;\!, obtemos

 0 = \left[  \frac{1}{2} \rho_1 v_1^2+ \phi_1 \rho_1 + \epsilon_1 \rho_1  + p_1 \right] A_1 v_1 \, \Delta t  - \left[ \frac{1}{2} \rho_2 v_2^2 + \phi_2\rho_2 + \epsilon_2 \rho_2  + p_2 \right] A_2 v_2 \, \Delta t

Reescrevendo:

 0 = \left[ \frac{1}{2} v_1^2 + \phi_1 + \epsilon_1  + \frac{p_1}{\rho_1} \right] \rho_1 A_1 v_1 \, \Delta t  - \left[  \frac{1}{2} v_2^2  + \phi_2 + \epsilon_2  + \frac{p_2}{\rho_2} \right] \rho_2 A_2 v_2 \, \Delta t

Agora, usando o resultado obtido anteriormente a partir da conservação da massa, isto pode ser simplificado de forma a se obter

 \frac{1}{2}v^2 + \phi + \epsilon + \frac{p}{\rho} = {\rm \mbox{constante} } \equiv b

que é a solução procurada.

Referências[editar | editar código-fonte]