Saltar para o conteúdo

Equação de difusão

Origem: Wikipédia, a enciclopédia livre.

A equação da difusão é uma equação em derivadas parciais que descreve flutuações de densidade em um material que se difunde. É também usada para descrever processos exibindo um comportamento de difusão.

A equação é geralmente escrita como:[1]

.

Nesta expressão é a densidade do material que difunde, é o tempo, e é o coeficiente de difusão coletivo, é a coordenada espacial e o símbolo nabla (∇) representa o vetor operador diferencial del. Se o coeficiente de difusão depende da densidade, então a equação não é linear; de outra maneira seria linear. Se D é constante, então a equação se reduz à seguinte equação linear:

.

Mais geralmente, quando D é uma matriz simétrico definida positiva, a equação descreve uma difusão anisótrica.

A equação de difusão pode ser deduzida a partir da equação de continuidade. A mesma expressa que uma alteração na densidade em um sistema é devido a um fluxo em entrada ou a um fluxo em saída de material do sistema. Ou seja, não pode haver nem criação nem destruição de matéria.

.

Nesta expressão é o fluxo de material que difunde. A equação de difusão pode ser obtida facilmente desta relação quando é combinada com a Lei de Fick, que assume que o fluxo do material que difunde em qualquer parte do sistema é proporcional ao gradiente local de densidade:

.

Referências

  1. «Diffusion equation» (em inglês). Encyclopedia of Mathematics. Consultado em 15 de agosto de 2020 

Ligações externas

[editar | editar código-fonte]
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.