Equação de difusão
A equação da difusão é uma equação em derivadas parciais que descreve flutuações de densidade em um material que se difunde. É também usada para descrever processos exibindo um comportamento de difusão.
Equação
[editar | editar código-fonte]A equação é geralmente escrita como:[1]
- .
Nesta expressão é a densidade do material que difunde, é o tempo, e é o coeficiente de difusão coletivo, é a coordenada espacial e o símbolo nabla (∇) representa o vetor operador diferencial del. Se o coeficiente de difusão depende da densidade, então a equação não é linear; de outra maneira seria linear. Se D é constante, então a equação se reduz à seguinte equação linear:
- .
Mais geralmente, quando D é uma matriz simétrico definida positiva, a equação descreve uma difusão anisótrica.
Dedução
[editar | editar código-fonte]A equação de difusão pode ser deduzida a partir da equação de continuidade. A mesma expressa que uma alteração na densidade em um sistema é devido a um fluxo em entrada ou a um fluxo em saída de material do sistema. Ou seja, não pode haver nem criação nem destruição de matéria.
- .
Nesta expressão é o fluxo de material que difunde. A equação de difusão pode ser obtida facilmente desta relação quando é combinada com a Lei de Fick, que assume que o fluxo do material que difunde em qualquer parte do sistema é proporcional ao gradiente local de densidade:
- .
Ver também
[editar | editar código-fonte]Referências
- ↑ «Diffusion equation» (em inglês). Encyclopedia of Mathematics. Consultado em 15 de agosto de 2020
Ligações externas
[editar | editar código-fonte]- Difusión y Ley de Fick (em castelhano)