Valor eficaz

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Disambig grey.svg Nota: Se procura outros conceitos com as mesmas iniciais, veja RMS.

Em Matemática, a raiz do valor quadrático médio ou RMS (do inglês root mean square) ou valor eficaz é uma medida estatística da magnitude de uma quantidade variável. Pode-se calcular para uma série de valores discretos ou para uma função variável contínua. O nome deriva do fato de que é a raiz quadrada da média aritmética dos quadrados dos valores. É um caso especial da potência média com o expoente p = 2.

Definição[editar | editar código-fonte]

O rms para uma coleção de N valores {x1, x2, ... , xN} é dado pela fórmula (1):

Para uma função variável contínua f(t) definida sobre o intervalo T1t ≤ T2 o rms é dado pela expressão:

O valor rms para uma função ao longo do tempo é:

O RMS ao longo do tempo para uma função periódica é igual ao RMS de um período da função. O valor RMS de uma função ou sinal contínuos pode ser avaliado, tomando o RMS de uma série de amostras, igualmente espaçadas no tempo.

Equações para calcular os valores RMS de formas de onda comuns[editar | editar código-fonte]

Grandezas e Unidades:
't:' tempo em Segundos (s)
'f:' Frequencia em Hertz (Hz)
'a:' amplitude (valor de pico). Pode ser qualquer grandeza física, ex.: Corrente (Ampéres), Tensão (Volts), Força (Newtons), etc
'%:' é a operação "Resto da divisão inteira"
Ex.:
10 / 3 = 3,333333...
10 % 3 = 0,333333...
Forma de Onda Equação RMS
Senoide (pt-BR) / Sinusoide (pt-PT)
Onda Quadrada
Senoide / Sinusoide e Modificada
Onda "Dente-de-Serra"

Utilização[editar | editar código-fonte]

O valor eficaz de uma função é frequentemente usado na física e na eletrônica. Por exemplo, nós podemos calcular a Potência P dissipada por um condutor elétrico de resistência R. Ela é fácil de se calcular quando uma corrente constante (I) percorre o condutor, que é simplesmente:

ou, considerando uma tensão eléctrica V, é aplicada a uma resistência R, fica:

Mas e se a corrente é uma função I(t) que varia seu valor no tempo? É neste momento que se utiliza o valor eficaz. Neste caso, pode-se substituir o valor da corrente constante I pelo valor eficaz da função I(t) na equação acima para se obter a potência dissipada média, assim:

Alternativamente, se a tensão é uma função V(t) que varia seu valor no tempo, a potência dissipada média é dada pela equação:

No caso comum da corrente alternada, quando I(t) é uma corrente senoidal, tal como se verifica na energia eléctrica distribuída na rede pública, o valor RMS é fácil de calcular a partir da equação (2) acima indicada. O resultado é:

ou, no caso da tensão:

em que Ip e Vp são os valores de pico (amplitude).

O valor RMS pode ser calculado usando a equação (2) para qualquer forma de onda, por exemplo, um sinal de áudio ou de rádio. Assim, podemos calcular a potência média fornecida a uma carga específica. Por esta razão, as tensões (ou voltagens) indicadas em tomadas de energia e equipamentos eléctricos, (127V ou 220V) são os valores RMS e não os valores de pico (amplitudes).

No campo de áudio, potência média é frequentemente (e de forma errada) designada potência RMS. Isto deve-se provavelmente derivado de Tensão RMS ou corrente RMS. Além disso, como o valor RMS implica alguma forma de valor médio, expressões como "potência RMS de pico", frequentemente utilizadas em anúncios de amplificadores de áudio, não têm qualquer significado.

Relação entre média aritmética e desvio padrão[editar | editar código-fonte]

Se for a média aritmética e o desvio padrão de uma população, então:

Ver também[editar | editar código-fonte]


Ícone de esboço Este artigo sobre Ciência (genérico) é um esboço. Você pode ajudar a Wikipédia expandindo-o.