ARN mensageiro

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

O ARN mensageiro, RNA mensageiro, ARNm, mARN, RNAm ou mRNA é o ARN responsável pela transferência de informações do ADN (ou DNA) até ao local de síntese de proteínas na célula. Durante a transcrição, uma enzima, designada ARN-polimerase faz a cópia de um gene do ADN para o ARNm. Nos procariotas o ARNm não sofre, geralmente, qualquer processo de modificação - aliás, a síntese das proteínas chega a ocorrer enquanto a transcrição ainda está a acontecer. [1]

Nos eucariotas, por outro lado, a transcrição e a tradução ocorrem em locais distintos da célula: no núcleo e no citoplasma,pela ação conjunta do ribossomo e do ARN Transportador respectivamente. A síntese protéica (tradução) nos eucariotas, conta também com a ajuda do Retículo endoplasmático granular (REG), que tem como função levar a proteína produzida para o meio extra-celular ou serem armazenadas no complexo golgiense para serem utilizadas mais tarde pela célula. Lembramos que a molécula do ARNm no espaço, se apresenta como uma fita simples. As bases púricas (purinas) e pirimídicas (pirimidinas) do ARN são: A (Adenina), C (Citosina), G (Guanina) e U (Uracila).

Estrutura[editar | editar código-fonte]

Esquema da estrutura molecular típica de mRNA de proteína humana.

Regiões Codificadoras[editar | editar código-fonte]

Regiões codificadoras são compostas por códons, que são decodificados e traduzidos em proteínas, sendo que normalmente em eucariotos é formada apenas uma e em procariotos geralmente são formadas várias. Regiões codificadoras começam com um códon de iniciação e termina com um códon de parada, sendo que geralmente o códon de iniciação é uma tripla AUG e o códon de parada é uma tripla do tipo UAA, UAG ou UGA. Essas regiões tendem a ser estáveis devido aos pares de bases internos, impedindo assim sua degradação. [2] [3] Além de serem responsáveis pela codificação de proteínas, partes das regiões codificadoras podem agir como sequências regulatórias no pré-mRNA como potenciadores ou silenciadores de splicing exônicos.

Regiões não traduzidas[editar | editar código-fonte]

Regiões não traduzidas (UTR) são seções do mRNA antes do códon de iniciação e depois do códon de parada que não são traduzidas, denominada como 5'UTR e 3'UTR respectivamente. Essas regiões são transcritas junto com as regiões codificadoras, sendo assim são exônicas já que estão presentes no mRNA maduro. Vários papéis na expressão gênica têm sido atribuídos às regiões não traduzidas, incluindo instabilidade do mRNA, localização do mRNA e eficiência da tradução. A habilidade da UTR de realizar estas funções depende da sua sequência e pode diferir entre mRNAs. Variantes genética na 3'UTR também têm implicado da suscetibilidade a doenças devido a mudanças na estrutura do RNA e na tradução de proteínas. [4]

A estabilidade dos mRNAs pode ser controlada pela 5'UTR e/ou 3'UTR devido a uma afinidade variável com as enzimas que degradam RNA chamadas de ribonuclease e por proteínas auxiliares que podem promover ou inibir a degradação do RNA. Eficiência da tradução incluindo às vezes a completa inibição da tradução, pode ser controlada pelas UTRs. Proteínas que ligam-se tanto na 3'UTR quanto na 5'UTR podem afetar a tradução devido a sua influência na habilidade do ribossomo de se ligar no mRNA. Micro-RNA ligados a 3'UTR também podem afetar a eficiência da tradução ou a estabilidade do mRNA.

Acredita-se que a localização do mRNA no citoplasma seja em função da 3'UTR. Proteínas que são necessárias em uma região específica da célula também podem ser traduzidas lá; neste caso, a 3'UTR pode conter sequências que permitem que o transcrito seja localizado para esta região para tradução.

Alguns dos elementos contidos nas região não traduzidas formam uma estrutura secundária característica quando transcrita em RNA. Estes elementos estruturais de mRNA estão envolvidos na regulação do mRNA. Algumas, como os elementos SECIS, são alvos de proteínas para se ligar. Uma classe de elementos de mRNA, os riboswitch, ligam-se diretamente em moléculas pequenas, mudando seu fold para modificar os níveis de transcrição e tradução. Nestes casos, o mRNA regula-se.

Cauda poli-A[editar | editar código-fonte]

A 3' da cauda Poli-A é uma longa sequência de nucleotídeos de adenina (normalmente várias centenas) adicionadas à extremidade 3' do pre-mRNA. Esta cauda promove a exportação do núcleo e tradução, além de proteger o mRNA de degradação.

Degradação[editar | editar código-fonte]

Diferentes mRNAs dentro da mesma célula tem tempos de vida distintos (em termos de estabilidade). Nas células bacterianas, mRNAs individuais podem sobreviver de segundos a mais de uma hora; em células de mamíferos, o tempo de vida de um mRNA varia de vários minutos a dias.[5] Quanto maior a estabilidade do mRNA, mais proteínas podem ser produzidas a partir desta molécula. O tempo de vida limitado de um mRNA possiblita que a célula altere a síntese de proteínas rapidamente em resposta às mudanças necessidades. Há vários mecanismos que levam a destruição do mRNA, os quais alguns são sitados abaixo

Degradação do mRNA de Procarioto[editar | editar código-fonte]

Em geral, o tempo de vida de um mRNA de procarioto é muito menor em relação aos de eucarioto. Procariotos degradam mensagens usando uma combinação de ribonucleases, incluindo endonucleases, 3' exonucleases e 5' exonucleases. Em alguns casos, pequenas moléculas de RNA (sRNA), com tamanho de cerca de dezenas a centenas de nucleotídeos, podem estimulas a degradação de mRNAs específicos por emparelhamento de bases com sequências complementares, facilitando assim a clivagem pela Ribonuclease III. Recentemente foi demonstrado que a bactéria também tem uma expécie de cap 5' que consiste de um trifosfato na extremidade 5'. [6] Removendo os 2 fosfatos deixa um "monofosfato" na extremidade 5', fazendo com que a mensagem seja destruída pela exonuclease RNase J.

Decaimento de elementos ricos em AU[editar | editar código-fonte]

A presença de elementos ricos em AU (ouro) em alguns mRNAs em mamíferos tendem a desestabilizar aqueles transcritos pela ação de proteínas celulares que ligam essas sequências e estimula a remoção da cauda poli-A. É pensado que a perda da cauda poli-A promove a degradação do mRNA por facilitar o ataque tanto do exossoma.[7] A rápida degradação do mRNA por elementos ricos em AU é um mecanismo crítico para prevenção de superprodução citocinas potentes como o fator de necrose tumoral (TNF) e o fator estimulante de colônias de granulócitos e macrófagos (GM-CSF).[8]

Degradação mediada por mutação sem sentido[editar | editar código-fonte]

Mensagens em eucariotos estão sujeitas a vigilância por degradação mediada por mutação sem sentido, a qual verifica a presença de códons de parada prematuros (códons nonsense) na mensagem. Estes podem surgir por splicing incompleto, recombinação V(D)J no sistema imune adaptativo, mutações no DNA, erros de transcrição, entre outras causas. Detecção de um códon de parada prematura inicia a degração do mRNA pela remoção da cauda poli-A, clivagem da endonuclease, entre outros.

SiRNA[editar | editar código-fonte]

SiRNA processados pela Dicer são incorporadas num complexo conhecido como RNA-induced silencing complex ou RISC. Este complexo contem uma endonuclease que cliva mensagens perfeitamente complementares no qual o siRNA se liga. Os fragmentos de mRNA resultantes são então destruídos pelas exonucleases. SiRNA é normalmente usado em laboratórios para bloquear a função de genes em culturas de células. É pensado que faça parte do sistema imune natural como defesa contra RNA de vírus de cadeia dupla. [9]

MicroRNA (miRNA)[editar | editar código-fonte]

MicroRNA (miRNAs) são moléculas pequenas de RNA que tipicamente são parcialmente complementares em relação aos RNA mensageiro em animais. [10] A ligação de um miRNA com um mRNA pode reprimir a tradução da mensagem e acelerar a remoção da cauda poli-A, acelerando assim a degradação do mRNA. O mecanismo de ação dos miRNAs é objeto de várias pesquisas [11]. Com isso vários softwares já foram desenvolvidos com o objetivo de estudar esta relação como:


Referências

  1. «ARN mensageiro». Porto Editora. InfoEscola. Consultado em 11 de agosto de 2013. 
  2. Shabalina, S.A., Ogurtsov, A.Y. and Spiridonov, N.A. (2006). A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res., 34, 2428-2437.
  3. Katz L, Burge CB (September 2003), "Widespread Selection for Local RNA Secondary Structure in Coding Regions of Bacterial Genes", Genome Res., 13 (9): 2042–51
  4. Lu, YF; Mauger, DM; Goldstein, DB; Urban, TJ; Weeks, KM; Bradrick, SS (4 November 2015). "IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance.". Scientific reports. 5: 16037.
  5. Yu, Jia; Russell, J. Eric. "Structural and Functional Analysis of an mRNP Complex That Mediates the High Stability of Human β-Globin mRNA" (PDF). National Center for Biotechnology Information. Retrieved 4 June 2014.
  6. Deana, Atilio; Celesnik, Helena; Belasco, Joel G. (2008), "The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal", Nature, 451 (7176): 355–8
  7. Chen, C.Y.; Gherzi, R.; Ong, S.E.; Chan, E.L.; Raijmakers, R.; Pruijn, G.J.M.; Stoecklin, G.; Moroni, C.; Mann, M.; Karin, Michael (2001), "AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs", Cell, 107 (4): 451–464
  8. Shaw G, Kamen R (August 1986), "A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation", Cell, 46 (5): 659–67
  9. Obbard, D.J.; Gordon, K.H.J.; Buck, A.H.; Jiggins, F.M. (2009), "The evolution of RNAi as a defence against viruses and transposable elements", Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1513): 99–115
  10. Brennecke J, Stark A, Russell RB, Cohen SM (March 2005), "Principles of MicroRNA–Target Recognition", PLoS Biol., 3 (3): e85
  11. Eulalio, A.; Huntzinger, E.; Nishihara, T.; Rehwinkel, J.; Fauser, M.; Izaurralde, E. (2009), "Deadenylation is a widespread effect of miRNA regulation", RNA, 15 (1): 21–32
Ícone de esboço Este artigo sobre Biologia molecular é um esboço. Você pode ajudar a Wikipédia expandindo-o.