Elipsoide

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde outubro de 2012). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Imagem tridimensional de um elipsoide

Em matemática, um elipsoide (pré-AO 1990: elipsóide) é uma superfície cuja equação num sistema de coordenadas cartesianas x-y-z é

onde a, b e c são números reais positivos que determinam as dimensões e forma do elipsoide. Se dois dos números são iguais, o elipsoide é um esferoide; se os três forem iguais, trata-se de uma esfera.

Supondo a ≥ b ≥ c, então:

  • a ≠ b ≠ c : o elipsoide é escaleno
  • c = 0 : o elipsoide é plano (duas elipses em simetria)
  • b = c : esferoide em forma de charuto
  • a = b : esferoide em forma de comprimido
  • a = b = c : esfera


Os esferoides resultam da rotação de uma elipse em torno de um dos seus eixos.

Volume[editar | editar código-fonte]

O volume de um elipsoide é dado por[1]:

Área da superfície[editar | editar código-fonte]

A área da superfície tem uma fórmula mais complexa, dada por:

em que

e e são os integrais elípticos incompletos do segundo e terceiro tipos.

Fórmulas aproximadas:

Elipsoide plano:
Se :
Se :
Se o elipsoide é escaleno:

onde p ≈ 1.6075 resulta num erro relativo máximo de cerca de 1.061% (fórmula de Knud Thomsen); um valor de p = 8/5 = 1.6 resulta bem para praticamente todos os elipsoides esferoides, com erro relativo máximo de 1.178% (fórmula de David W. Cantrell).

Transformações lineares[editar | editar código-fonte]

Ao aplicar uma transformação linear invertível a uma esfera, obtém-se um elipsoide

A intersecção de um elipsoide com um plano é um conjunto vazio, um ponto ou uma elipse.

Aplicação em cartografia[editar | editar código-fonte]

Nas ciências cartográficas, os elipsoides são utilizados como aproximação da forma irregular da Terra, já que representam o achatamento nos pólos, ao contrário das esferas. As projecções cartográficas têm como domínio coordenadas elipsoidais.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Referências

  1. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, (editores), 2010, NIST Handbook of Mathematical Functions (Cambridge University Press)