Transformação linear

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde Dezembro de 2011). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Disambig grey.svg Nota: Não confundir com Função afim, ou Função polinomial de primeiro grau.
A reflexão em torno do eixo Oy é um exemplo de transformação linear.

Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da álgebra abstrata, uma transformação linear é um homomorfismo de espaços vetoriais.

Definição e consequências imediatas[editar | editar código-fonte]

Sejam e espaços vetoriais sobre o mesmo corpo

Diz-se que uma função de em é uma transformação linear se

Exemplos de transformações lineares:

  • a função de em definida por
  • a função de em definida por
  • a função de em definida por
  • se for o espaço das funções deriváveis de R em R e se for o espaço de todas as funções de R em R, então a derivação (isto é, a função de em que envia cada função na sua derivada) é linear.

Em contrapartida, se  ∈  \  então a função de em definida por não é uma transformação linear.

Se for uma função de um espaço vetorial num espaço vetorial então afirmar que é linear equivale a afirmar que preserva combinações lineares de pares de vetores, isto é, para quaisquer dois vetores  ∈  e dois escalares  ∈ 

Para qualquer aplicação linear de em tem-se:

  • pois
  • se  ∈  então pois

Função linear[editar | editar código-fonte]

Question book.svg
Esta seção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde setembro de 2011). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Uma função linear

Função linear é a função matemática que possui duas propriedades:

  • Aditividade:

  • Homogeneidade:

Em suma:

As funções lineares são funções cujo gráfico é uma recta que atravessa a origem do plano cartesiano, isto é, em que b=0.

Definição[editar | editar código-fonte]

Chama-se função linear à função definida por uma equação da forma em que é um número real.

  • é a variável dependente e a variável independente;
  • é o coeficiente angular

Nota: geralmente os economistas chamam a qualquer reta da forma uma função linear. No entanto, o conceito puro matemático, requer que a ordenada na origem seja zero para que a função seja considerada linear. Quando é diferente de zero, passa-se a chamar de função afim.

Ver artigo principal: Aplicação linear

A definição mais geral de função linear é feita no contexto da álgebra linear, e depende do conceito de espaço vetorial.

Sejam espaços vetoriais. Uma função é uma função linear se ela satisfaz os seguintes axiomas:

Note-se que, quando não existe possibilidade de confusão, escreve-se + e . para as somas de vetores e produto de escalar por vetor, e os axiomas ficam:

Núcleo[editar | editar código-fonte]

O núcleo de uma transformação linear de em denotado por é o conjunto em que é o vetor nulo de

Exemplo: O núcleo da função de em definida por é:

O conjunto é um subespaço vetorial de V, pois se  ∈  e se  ∈  então ou seja,  ∈ 

Se uma aplicação linear de em for injectiva, então pois e, portanto, pela injectividade de o único vector  ∈  tal que é Reciprocamente, se então é injectiva, pois, dados  ∈ 

Imagem[editar | editar código-fonte]

Sejam e espaços vectoriais sobre um corpo A imagem de uma transformação linear de em é o conjunto:

Sejam dois elementos da imagem de e sejam Então, como estão na imagem de há vectores tais que e que pelo que:

Logo, é um subespaço vetorial de

Dimensão da imagem e do núcleo[editar | editar código-fonte]

Sejam e espaços vectoriais sobre um corpo sendo de dimensão finita, e seja uma transformação linear de em Então

Vai ser visto como se pode demonstrar esse facto. Seja e seja uma base de Como é um subespaço de pode-se completar essa base até obtermos uma base de Sejam então  …  ∈  tais que seja uma base de em particular, Vai-se provar que é uma base de Im de onde resultará que
Se  ∈ Im então para algum  ∈  e pode ser escrito sob a forma
pelo que
visto que  ∈  Isto prova que gera Por outro lado, os vetores são linearmente independentes, pois se  ∈  forem tais que
então
de onde resulta que  ···  é uma combinação linear dos vetores , o que é só é possível se ···, pois o conjunto é uma base e, portanto, linearmente independente.

Este teorema também pode ser estendido para dimensões infinitas, mas, neste caso, sua demonstração e até o enunciado dependem do axioma da escolha.

Tipos especiais[editar | editar código-fonte]

Denomina-se isomorfismo uma transformação linear que seja bijetiva.

Denomina-se endomorfismo ou operador linear uma transformação linear de um espaço vetorial «nele mesmo», ou seja, uma transformação que tenha domínio igual ao contradomínio.

Se for um endomorfismo de um espaço vetorial de dimensão finita, então são condições equivalentes:

  1. é injetivo;
  2. é sobrejetivo;
  3. é bijetivo.

É claro que a terceira condição implica as outras duas. Se for sobrejetivo, então

pelo que e, portanto, pelo que é injetivo. Por outro lado, se for injetivo, então
pelo que e, portanto, ou seja, é sobrejetivo.

Exemplos de matrizes de transformações lineares[editar | editar código-fonte]

Alguns casos especiais de transformações lineares do espaço R2 são bastante elucidativas:

  • rotação de 90 graus no sentido anti-horário:
  • rotação por θ graus no sentido anti-horário:
  • reflexão em torno do eixo x:
  • reflexão em torno do eixo y:
  • projeção sobre o eixo y:

Espaço das transformações lineares[editar | editar código-fonte]

Sejam e espaços vetoriais sobre o corpo Seja definido como o conjunto de todas transformações lineares de em Como funções, para quaisquer operadores e e qualquer escalar podemos definir e por:

É imediato provar que e também são transformações lineares de em e que com a soma de transformações e a multiplicação de um escalar por uma transformação forma um espaço vetorial sobre

Pelo fato de que, dadas bases de e temos uma representação de cada transformação linear através de uma matriz de dimensão  ×  concluímos que a dimensão de é (no caso de dimensão infinita, algum cuidado deve ser tomado nesta demonstração).

Espaço dos operadores lineares[editar | editar código-fonte]

Um caso particular importante é o espaço das transformações lineares de um espaço vectorial nele mesmo (operadores lineares).

Como a composição de operadores lineares é um operador linear, este espaço tem uma estrutura de álgebra, em que a composição de funções faz o papel do produto de operadores.

Assim, dado um operador linear T, podem-se definir as potências T2, T3, ou, de modo geral, Tn para qualquer n inteiro positivo. Portanto, se p(x) é um polinómio com coeficientes no corpo de escalares, faz sentido definir p(T):

em que IV é o operador identidade em V.

Verificam-se facilmente as seguintes propriedades:

  • Se p(x) e q(x) são polinómios, então e

Se o espaço V tem dimensão finita n, então L(V,V) também tem dimensão finita n2. Portanto, o conjunto de n2+1 operadores é linearmente dependente. Logo, existem escalares não todos nulos, tais que Ou seja, existe um polinómio não-nulo p(x) tal que p(T) = 0.

Se existe um polinómio não-nulo f(x) tal que f(T) = 0, então o conjunto não-vazio dos polinómios q(x) tais que q(T) = 0 forma um ideal no anel de todos polinómios com coeficientes no corpo. Portanto, existe um único polinómio mónico p(x) tal que p(T) = 0. Este polinómio é chamado de polinómio mínimo de T.

Espaço dual[editar | editar código-fonte]

Ver artigo principal: Espaço dual

Seja um espaço vetorial sobre um corpo O espaço dual de representado por é o espaço vetorial das transformações lineares de em

Ver também[editar | editar código-fonte]