Espaço vetorial

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Question book-4.svg
Esta página cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde novembro de 2013). Ajude a inserir referências. Conteúdo não verificável poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)
Translation arrow.svg
Este artigo ou secção resulta, no todo ou em parte, de uma tradução do artigo «Vector space» na Wikipédia em inglês, na versão original. Você pode incluir conceitos culturais lusófonos de fontes em português com referências e inseri-las corretamente no texto ou no rodapé. Também pode continuar traduzindo ou colaborar em outras traduções. Encontre fontes: Google (notícias, livros e acadêmico)
Disambig grey.svg Nota: Não confundir com Campo vetorial.
Adição vetorial e multiplicação por escalar: um vetor v (azul) é adicionado a outro vetor w (vermelho, ilustração superior). Na imagem inferior, w está esticado por um fator de 2, acarretando a soma v + 2w.

Um espaço vetorial (também chamado de espaço linear) é uma coleção de objetos chamada vetores, que podem ser somados um a outro e multiplicados ("escalonados") por números, denominados escalares. Os números reais são escalares frequentemente utilizados, mas também existem espaços vetoriais com multiplicação por números complexos, números racionais; em geral, por qualquer corpo.[1] As operações de adição de vetores e multiplicação por escalar precisam satisfazer certas propriedades, denominadas axiomas (listados abaixo, em § Definição). Para explicitar se os escalares são números reais ou complexo, os termos espaço vetorial real e espaço vetorial complexo são frequentemente utilizados.

Vetores euclidianos são um exemplo de espaço vetorial. Eles representam quantidades físicas como forças: quaisquer duas forças (do mesmo tipo) podem ser somadas para resultar em uma terceira, enquanto que a multiplicação de um vetor de força por um número real gera outro vetor de força. De forma semelhante, porém com um sentido mais geométrico, vetores que representam deslocamentos em um plano ou em um espaço tridimensional também formam espaços vetoriais. Vetores em espaços vetoriais não necessitam ser objetos do tipo seta, como aparecem nos exemplos mencionados acima; vetores são tratados como entidades matemáticas abstratas com propriedades particulares, que, em alguns casos, podem ser visualizados por setas.

Espaços vetoriais são o objeto de estudo da álgebra linear e são bem caracterizados pela sua dimensão, que, a grosso modo, especifica o número de direções independentes no espaço. Espaços vetoriais de dimensão infinita surgem naturalmente em análise matemática, como em espaços funcionais, cujos vetores são funções. Esses espaços vetoriais são munidos em geral de uma estrutura adicional, que pode ser uma topologia, permitindo a consideração de conceitos como proximidade e continuidade. Dentre essas topologias, aquelas que são definidas por uma norma ou um produto interno são mais frequentemente utilizadas, por possuírem uma noção de distância entre dois vetores. Esse é o caso particularmente com os espaços de Banach e os espaços de Hilbert, que são fundamentais em análise matemática.

Historicamente, as primeiras ideias que levaram ao conceito de espaços vetoriais podem ser associadas aos avanços, durante o século XVII, nas áreas de geometria analítica, matrizes, sistemas de equações lineares, e vetores euclidianos. O tratamento moderno e mais abstrato, formulado pela primeira vez por Giuseppe Peano em 1888, contém objetos mais gerais que o espaço euclidiano, mas muito da teoria pode ser visto como uma extensão de ideias da geometria clássica como retas, planos, e seus análogos de dimensão mais alta. Atualmente, os espaços vetoriais permeiam a matemática, a ciência e a engenharia. Eles são a noção apropriada da álgebra linear para lidar com sistemas de equações lineares. Eles oferecem um escopo para as séries de Fourier, que são utilizadas em métodos de compressão de imagens, e eles fornecem um ambiente que pode ser utilizado para técnicas de solução de equações diferenciais parciais. Ademais, espaços vetoriais fornecem uma maneira abstrata, livre de coordenadas, de lidar com objetos geométricos e físicos como tensores. Isso por sua vez permite a análise de propriedades locais variedades por técnicas de linearização. Espaços vetoriais podem ser generalizados de diversas maneiras, acarretando noções mais avançadas em geometria e em álgebra abstrata.

Não é necessário que os vetores tenham interpretação geométrica, mas podem ser quaisquer objetos que satisfaçam os axiomas abaixo. Polinômios de grau menor ou igual a () formam um espaço vetorial,[2] por exemplo, assim como grupos de matrizes [3] e o espaço de todas as funções de um conjunto no conjunto R dos números reais.

Introdução e definição[editar | editar código-fonte]

O conceito de espaço vetorial será primeiramente explicado pela descrição de dois exemplos específicos:

Primeiro exemplo: setas em um plano[editar | editar código-fonte]

O primeiro exemplo de um espaço vetorial consiste de setas em um plano fixo, começando por um ponto fixo. Isso é usado em física para descrever forças ou velocidades. Dadas duas setas deste tipo, v e w, o paralelogramo formado por elas contém uma seta diagonal que também começa na origem. Essa nova seta é chamada de soma das setas anteriores e é denotada por v + w. No caso especial de duas setas na mesma linha, a soma delas é a seta na mesma linha cujo comprimento é a soma ou a diferença dos comprimentos, dependendo se as setas possuem mesmo sentido ou sentidos opostos. Uma outra operação que pode ser feita com setas é o seu escalonamento: dado qualquer número real positivo a, a seta que tem a mesma direção que v, mas está dilatada ou contraída ao multiplicar seu comprimento por a, é chamada multiplicação de v por a. É denotada por av. Quando a for negativo, av é definido como a seta apontando no sentido oposto.

A seguir estão alguns exemplos: se a = 2, o vetor resultante aw tem a mesma direção que w, mas está esticado, tendo um comprimento que é o dobro de w (imagem abaixo, à direita). De forma equivalente, 2w é a soma de w + w. Além disso, (−1)v = −v tem o sentido oposto e o mesmo comprimento que v (vetor azul apontando para baixo, na imagem à direita).

Adição de vetores: a soma v + w (em preto) dos vetores v (azul) e w (vermelho) é mostrada. Multiplicação por escalares: os múltiplos −v e 2w são mostrados.

Segundo exemplo: pares ordenados de números[editar | editar código-fonte]

Um segundo exemplo chave de um espaço vetorial é fornecido por pares de números reais x e y. (A ordem das componentes x e y é importante, de modo que um par também seja chamado de par ordenado.) Tal par é escrito como (x, y). A soma de dois desses pares e a multiplicação de um par por um número são definidas da seguinte maneira:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

e

a (x, y) = (ax, ay).

O primeiro exemplo acima reduz-se a esse se as setas forem representadas por um par de coordenadas cartesianas do seus pontos finais.

Definição[editar | editar código-fonte]

Neste artigo, os vetores são representados em negrito para distingui-los de escalares.[nota 1]

Um espaço vetorial sobre um corpo K é um conjunto conjunto V munido de duas operações que satisfazem os oito axiomas abaixo.

  • A primeira operação, chamada de adição de vetores ou simplesmente adição + : V × VV, leva quaisquer dois vetores v e w e associa a eles um terceiro vetor, normalmente escrito como v + w, e chamado de soma dos dois vetores iniciais. (O vetor resultante também é um elemento de V.)
  • A segunda operação, chamada de multiplicação por escalar · : F × VV, toma qualquer escalar a e qualquer vetor v e fornece um outro vetor av. (Similarmente, um vetor av é um elemento do conjunto V.)

Elementos de V são normalmente denominados vetores. Elementos de K são comumente denominados escalares.

Nos dois exemplos acima, o corpo utilizado é o corpo dos números reais e o conjunto de vetores consiste das setas planas com um ponto fixo de início e de pares de números reais, respectivamente.

Para qualificar um conjunto como sendo um espaço vetorial, ele V e suas operações de adição e multiplicação devem obedecer às condições impostas a seguir, denominadas axiomas.[4] Na lista abaixo, sejam u, v e w vetores arbitrários de V, e a e b escalares em K.

Axioma Significado
Associatividade da adição u + (v + w) = (u + v) + w
Comutatividade da adição u + v = v + u
Elemento identidade da adição Existe um elemento 0V, denominado vetor nulo, tal que v + 0 = v para todo vV.
Elemento inverso da adição Para todo vV, existe um elemento vV, chamado de inverso aditivo de v, tal que v + (−v) = 0.
Compatibilidade da multiplicação por escalar com a multiplicação do corpo a(bv) = (ab)v [nota 2]
Elemento identidade da multiplicação por escalar 1v = v, em que 1 denota a identidade multiplicativa em K.
Distributividade da multiplicação por escalar em relação à adição de vetores   a(u + v) = au + av
Distributividade da multiplicação por escalar em relação a adição do corpo (a + b)v = av + bv

Esses axiomas generalizam as propriedades dos vetores introduzidos nos exemplos acima. De fato, o resultado da adição de dois pares ordenados (como no segundo exemplo acima) não depende da ordem dos somandos:

(xv, yv) + (xw, yw) = (xw, yw) + (xv, yv).

Da mesma forma, no exemplo geométrico de vetores como setas, v + w = w + v como o paralelogramo que define a soma dos vetores é independente da ordem dos vetores. Todos os outros axiomas podem ser verificados de forma semelhante nos outros exemplos. Portanto, ao ignorar a natureza concreta desse tipo particular de vetores, a definição incorpora esses dois exemplos e muitos outros em uma noção unificadora de espaço vetorial.

A subtração de dois vetores e a divisão por escalar (não nulo) pode ser definido como

.

Quando o corpo dos escalares K é o dos números reais R, o espaço vetorial é chamado de espaço vetorial real; quando for o dos números complexos C, o espaço vetorial é chamado de espaço vetorial complexo. Esses dois casos são aqueles mais frequentemente utilizados em engenharia. A definição geral de espaço vetorial permite que os escalares sejam elementos de qualquer corpo fixo K. A noção é então abstraída para um espaço vetorial sobre K. Um corpo é, essencialmente, um conjunto de números que possui as operações de adição, subtração, multiplicação e divisão.[nota 3] Por exemplo, os números racionais formam um corpo.

Em contraste com a intuição provinda de vetores em um plano ou em outros objetos de dimensão maior, existe, em espaços vetoriais gerais, a noção de vizinhanças, ângulos e distâncias. Para lidar com essas questões, tipos particulares de espaços vetoriais são introduzidos.

Formulações alternativas e consequências elementares[editar | editar código-fonte]

A adição de vetores e a multiplicação por escalar são operações que satisfazem a propriedade de fechamento: u + v e av pertencem a V para todo a em K, e u, v em V. Algumas referências mais antigas mencionam essas propriedades como axiomas separados.[5]

No linguajar da álgebra abstrata, os primeiros quatro axiomas são equivalentes a requerer que o conjunto de vetores seja um grupo abeliano sob adição. Os axiomas restantes dão a esse módulo sobre K estrutura. Em outras palavras, existe um homomorfismo de anéis f do corpo K para o anel de endomorfismo do grupo de vetores. A multiplicação por escalar av é então definida como (f(a))(v).[6]

Há várias outras consequências diretas dos axiomas de espaço vetorial. Algumas delas são derivadas teoria dos grupos elementar, aplicada ao grupo aditivo de vetores: por exemplo, o vetor nulo 0 de V e o inverso aditivo v de um vetor v são únicos. Outras propriedades seguem ao empregar também a lei de distributividade da multiplicação por escalar; por exemplo, av é igual a 0 se e somente se a é igual a 0 ou v é igual a 0.

Exemplos[editar | editar código-fonte]

Ver artigo principal: Exemplos de espaços vetoriais

Espaço do vetor nulo[editar | editar código-fonte]

Seja formado por um único elemento Então, definindo-se e para todo elemento de um corpo temos que é um espaço vetorial com como corpo de escalares. Obviamente, como é o elemento neutro de isto é, este espaço vetorial é representado por

Espaços de coordenada[editar | editar código-fonte]

Ver artigo principal: Espaço de coordenadas

O exemplo mais simples de um espaço vetorial sobre um corpo K é o próprio corpo, equipado com suas adição e multiplicação padrão. De forma mais geral, todas n-uplas (sequências de comprimento n)

(a1, a2, ..., an)

de elementos do corpo K formam um espaço vetorial que é usualmente denotado por Kn e chamado de espaço de coordenadas.[7] O caso n = 1 é o caso mais simples mencionado acima, no qual o corpo K também é percebido como um espaço vetorial sobre si mesmo. O caso K = R e n = 2 foi discutido na introdução acima.

Números complexos e outras extensões de corpos[editar | editar código-fonte]

O conjunto de números complexos C (isto é, números que podem ser escritos na forma x + iy, para números reais x e y, em que i é a unidade imaginária) formam um espaço vetorial sobre os reais com a adição e a multiplicação definidas usualmente: (x + iy) + (a + ib) = (x + a) + i(y + b) e c ⋅ (x + iy) = (cx) + i(cy) para números reais x, y, a, b e c. Os vários axiomas de um espaço vetorial seguem do fato de que as mesmas regras se mantêm para a aritmética dos números complexos.

De fato, o exemplo dos números complexos é essencialmente o mesmo (isto é, é isomórfico) ao espaço vetorial de pares ordenados de números reais mencionado acima: se pensarmos no número complexo x + i y como uma representação do par ordenado (x, y) no plano complexo, então percebe-se que as regras de soma e multiplicação de escalares correspondem exatamente ao exemplo anterior.

De modo mais geral, extensões de corpo fornecem uma outra classe de exemplos de espaços vetoriais, particularmente em álgebras e em teoria algébrica dos números: um corpo K que contém um corpo menor E é um espaço vetorial em E, pelas mesmas operações de adição e multiplicação definidas para K.[8] Por exemplo, os números complexos são um espaço vetorial sobre R, e a extensão de corpo é um espaço vetorial sobre Q.

Espaços funcionais[editar | editar código-fonte]

Ver artigo principal: Espaço funcional
Adição de funções: a soma das funções seno e exponencial é com

Funções de qualquer conjunto fixo Ω para um corpo K também formam espaços vetoriais, ao realizar adição e multiplicação por escalar ponto a ponto. Ou seja, a soma de duas funções f e g é a função (f + g) dada por

(f + g)(w) = f(w) + g(w),

e de modo semelhante para a multiplicação. Espaços funcionais desse tipo surgem em várias situações geométricas, quando Ω é a reta real ou um intervalo, ou outros subconjuntos de R. Muitas noções em topologia e análise, como continuidade, integrabilidade ou diferenciabilidade são bem comportadas em relação à linearidade: somas e múltiplos escalares de funções com essas propriedades ainda as preservam.[9] Portanto, o conjunto dessas funções é um espaço vetorial. Elas são estudadas em maior detalhe usando métodos de análise funcional. Restrições algébricas também geram espaços vetoriais: o espaço vetorial K[x] é dado por funções polinomiais:

f(x) = r0 + r1x + ... + rn−1xn−1 + rnxn, em que os coeficientes r0, ..., rn estão em K.[10]

Equações lineares[editar | editar código-fonte]

Sistemas de equações lineares homogêneas estão proximamente relacionados com os espaços vetoriais vector spaces.[11] Por exemplo, as soluções de

a + 3b + c = 0
4a + 2b + 2c = 0

são dadas por triplas com a arbitrário, de modo que b = a/2 e c = −5a/2. Elas formam um espaço vetorial: somas e múltiplos escalares de tais triplas precisam também satisfazer às mesmas razões entre as três variáveis; logo, elas também são soluções. Matrizes podem ser usadas para condensar várias equações lineares como acima em uma equação vetorial, a saber

Ax = 0,

em que A = é a matriz que contém os coeficientes das equações que compõem o sistema, x é o vetor (a, b, c), Ax denota um produto matricial, e 0 = (0, 0) é o vetor nulo. De forma semelhante, as soluções de equações diferenciais lineares homogêneas formam espaços vetoriais. Por exemplo,

f′′(x) + 2f′(x) + f(x) = 0

implica que f(x) = a ex + bx ex, em que a e b são constantes arbitrárias, e ex é a função exponencial.

Base e dimensão[editar | editar código-fonte]

Um vetor v em R2 (azul) expressado em termos de duas bases distintas: usando a base canônica de R2 v = xe1 + ye2 (preto), e usando uma base não ortogonal: v = f1 + f2 (vermelho).

Bases permitem representar vetores como uma sequência de escalares denominados coordenadas ou componentes. Uma base é um conjunto (finito ou infinito) B = {bi}iI de vetores bi, que por conveniência são frequentemente indexados por um conjunto de índices I, que gera todo o espaço é linearmente independente. "Gerar todo o espaço" significa que qualquer vetor v pode ser expresso por uma soma finita (chamada de combinação linear) dos elementos da base:

 

 

 

 

(1)

em que ak são escalares, chamados de coordenadas (ou de componentes) do vetor v em relação à base B, e bik (k = 1, ..., n) são os elementos de B. Independência linear significa que as coordenadas ak são univocamente determinadas para qualquer vetor no espaço vetorial.

Por exemplo, os vetores de coordenadas e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), até en = (0, 0, ..., 0, 1), formam uma base de Kn, chamada de base canônica, já que qualquer vetor (x1, x2, ..., xn) pode ser expresso de forma única como uma combinação linear desses vetores:

(x1, x2, ..., xn) = x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ... + xn(0, ..., 0, 1) = x1e1 + x2e2 + ... + xnen.

As coordenadas correspondentes x1, x2, ..., xn são exatamente as coordenadas cartesianas de um vetor.

Todo espaço vetorial possui uma base. Isso é uma consequência do lema de Zorn, uma formulação equivalente do axioma da escolha.[12] Dados os outros axiomas da teoria de conjuntos de Zermelo–Fraenkel, a existência de bases é equivalente ao axioma da escolha.[13] O teorema do ultrafiltro, que é mais fraco do que o axioma da escolha, implica que todas as bases de um determinado espaço vetorial têm o mesmo número de elementos, ou cardinalidade (ver Teorema da dimensão para espaços vetoriais).[14] Ela é chamada de dimensão do espaço vetorial, e é denotada por dim V. Se o espaço for gerado por um número finito de vetores, os enunciados acima podem ser provados sem um enfoque tão fundamental quanto o da teoria de conjuntos.[15]

A dimensão do espaço de coordenadas Kn é n, pelo que foi exibido acima. A dimensão do anel de polinômios K[x] introduzida acima é enumeravelmente infinita, sendo que uma base é 1, x, x2, ... A fortiori, a dimensão de espaços funcionais mais gerais, tal como o espaço de funções em um intervalo (limitado ou ilimitado), é infinita.[nota 4] Sob suposições adequadas de reguralidade dos coeficientes envolvidos, a dimensão do espaço de solução de uma equação diferencial ordinária homogênea é igual ao grau da equação.[16] Por exemplo, os espaço de soluções da equação acima é gerado por ex e {{xex}}. Essas duas funções são linearmente independentes sobre os reais R, de modo que a dimensão do espaço gerado seja 2, assim como o grau da equação.

Uma extensão de corpo sobre os racionais Q pode ser pensada como um espaço vetorial sobre Q (ao definir a soma de vetores como a soma de elementos do corpo, e definir a multiplicação por escalar como a multiplicação por elementos de Q, e por outro lado ignorando a multiplicação do corpo). A dimensão (ou grau) da extensão de corpo Q(α) sobre Q depende de α. Se α satisfaz algumas equação polinomial

com coeficientes racionais qn, ..., q0 (em outras palavras, se α é um número algébrico), a dimensão é finita. Mais precisamente, é igual ao grau do polinômio mínimo que tem α como raiz.[17] Por exemplo, os números complexos C são um espaço vetorial real bidimensional, gerados por 1 e pela unidade imaginária i. A unidade imaginária satisfaz i2 + 1 = 0, uma equação de grau 2. Portanto, C é um espaço vetorial bidimensional sobre R (e, como qualquer corpo, unidimensional como um espaço vetorial sobre si mesmo, C). Se α não for algébrico, a dimensão de Q(α) sobre Q é infinita. De fato, para α = π não existe tal equação; em outras palavras, π é um número transcendental.[18]

Aplicações lineares e matrizes[editar | editar código-fonte]

Ver artigo principal: Transformação linear

A relação entre dois espaços vetoriais pode ser expressa como um mapeamento linear ou uma transformação linear. Elas são funções que refletem a estrutura do espaço vetorial — isto é, elas preservam soma e multiplicação por escalar:

e f(a · v) a · f(v) para todo v e w em V, e todo a em K.[19]

Um isomorfismo é uma transformação linear f : VW tal que exista uma função inversa g : WV, a qual é um mapeamento tal que as duas possíveis composições fg : WW e gf : VV sejam a função identidade. De forma equivalente, f é um-pra-um (injetora) e é sobre o contradomínio (sobrejetora).[20] Se existir um isomorfismo entre V e W, os dois espaços são ditos isomórficos; eles então são essencialmente o mesmo espaço vetorial, já que todas as identidades válidas em V são, através de f, levadas a identidades semelhantes em W, e vice-versa através de g.

Descrever um vetor de seta v pelas suas coordenadas x e y acarreta um isomorfismo de espaços veotriais.

Por exemplo, as "setas em um plano" e os "pares ordenados de números", que são cada qual um espaço vetorial, são isomórficos: uma seta v em um plano que sai da origem de algum sistema (fixo) de coordenadas pode ser expresso por um par ordenado de números ao considerar as componentes x e y da seta, como mostrado na imagem ao lado. Por outro lado, dado um par (x, y), a seta que está à direita pela quantidade x (ou à esquerda, se x for negativo), e está para cima pela quantidade y (ou para baixo, se y for negativo) retorna a seta v.

As transformações lineares VW entre dois espaços vetoriais formam um espaço vetorial HomK(V, W), também denotado por L(V, W).[21] O espaço das transformações lineares de V para o corpo K é chamado de espaço dual, e é denotado por V.[22] Através do mapa natural injetivo VV∗∗, qualquer espaço vetorial pode ser embutido no seu bidual; o mapeamento é um isoformismo se e somente se o espaço tem dimensão finita.[23]

Uma vez que uma base de V é escolhida, as transformações lineares f : VW ficam completamente determinadas ao se especificar a imagem dos vetores da base, já que qualquer elemento de V é escrito de forma única como combinação linear desses vetores.[24] Se dim V = dim W, uma correspondência 1-para-1 entre as bases fixadas de V e W acarreta uma aplicação linear que mapeia qualquer elemento da base de V ao elemento correspondente da base de W; isto é, por definição, um isomorfismo.[25] Logo, dois espaços vetoriais são isomórficos se as suas dimensões são as mesmas. Outra forma de expressar isso é que qualquer espaço vetorial é completamente classificado (a menos de um isomorfismo) pela sua dimensão, um único número. Em particular, qualquer espaço vetorial n-dimensional V de tipo K é isomórfico a Kn. Não existe, no entanto, nenhum isomorfismo "canônico" ou preferencial; de fato, um isomorfismo φ : KnV é equivalente à escolha da base de V, ao mapear os vetores da base canônica de Kn para V, através de φ. A liberdade em escolher uma base conveniente é particularmente útil no contexto de dimensão infinita.

Matrizes[editar | editar código-fonte]

Ver artigos principais: Matriz e Determinante
Uma matriz típica.

Matrizes são uma noção útil para representar transformações lineares.[26] Elas são escritas como uma tabela retangular de escalares (imagem ao lado). Qualquer matriz A m-por-n gera um mapeamento linear de Kn para Km da seguinte maneira:

, em que denota um somatório,

ou, usando multiplicação de matrizes de A com o vetor de coordenadas x:

xAx.

Ademais, após escolher bases de V e de W, qualquer transformação linear f : VW é representada de forma única por uma matriz através desse procedimento.[27]

O volume desse paralelepípedo é o valor absoluto do determinante da matriz 3-por-3 formada pelos vetores r1, r2, e r3.

O determinante det (A) de uma matriz quadrada A é um escalar que diz se o mapeamento associado à matriz é um isomorfismo ou não: para isso, é suficiente e necessário que o determinante seja não nulo.[28] A transformação linear de Rn que corresponde a uma matriz n-by-n real preserva a orientação se e somente se seu determinante for positivo.

Autovetores e autovalores[editar | editar código-fonte]

Ver artigo principal: Autovalores e autovetores

Endomorfismos, aplicações lineares do tipo f : VV, são particularmente importantes já que nesse caso vetores v podem ser comparados com a sua imagem sob f, f(v). Qualquer vetor não nulo v que satisfaz a condição λv = f(v), em que λ é um escalar, é denominado autovetor de f com autovalor λ.[29] De maneira equivalente, v é um elemento do núcleo da diferença fλ · Id (em que Id é a função identidade VV). Se V tem dimensão finita, essa afirmação pode ser reformulada usando determinantes: f ter um autovalor λ é equivalente a

det(fλ · Id) = 0.

Ao desenvolvê-la através da definição de determinante, a expressão à esquerda pode ser analisada enquanto função polinomial de variável λ, chamada de polinômio característico de f.[30] Se o corpo K for abrangente o suficiente para conter uma raiz desse polinômio (o que acontece automaticamente quando K for algebricamente fechado, tal como K = C), qualquer aplicação linear tem pelo menos um autovetor. O espaço vetorial V pode ou não possuir uma base de autovetores. Esse fenômeno é regido pela forma canônica de Jordan da aplicação.[31][nota 5] O conjunto de todos os autovetores associados a um certo autovalor de f forma um espaço vetorial conhecido como autoespaço. Para alcançar o teorema espectral, a afirmação correspondente do caso em que a dimensão é infinita, as ferramentas da análise funcional são necessárias.

Propriedades[editar | editar código-fonte]

  • Se então [32] Isto é assim porque
  • Se  ∈  Isto é assim porque
  • Se  ∈  e  ∈  então [32] Isto é assim porque

Terminologia[editar | editar código-fonte]

  • Um espaço vetorial sobre o conjuntos dos números reais, é chamado espaço vetorial real.
  • Um espaço vetorial sobre o conjuntos dos números complexos, é chamado espaço vetorial complexo.
  • Um espaço vetorial com um conceito definido de comprimento, isto é uma norma definida, é chamado espaço vectorial normado.

Tipos de espaços vectoriais[editar | editar código-fonte]

Ver também[editar | editar código-fonte]

Notas

  1. Também é comum, especialmente na física, denotar vetores com uma seta superior à letra: .
  2. Esse axioma e o próximo se referem a duas operações distintas: a multiplicação por escalar: bv; e a multiplicação do corpo: ab. Eles não afirmam a associatividade de nenhuma das operações. Mais formalmente, a multiplicação por escalar é uma ação monoide do monoide multiplicativo do corpo K sobre o espaço vetorial V.
  3. Alguns autores (como Brown 1991 ) restringem sua atenção aos corpos R ou C, mas a maior parte da teoria permanece inalterada para um corpo qualquer.
  4. As funções indicadoras de intervalos (das quais há um número infinito) são linearmente independentes, por exemplo.
  5. Ver também o artigo Decomposição de Jordan–Chevalley.

Referências

  1. Noble & Daniel, 1986, p. 85–86
  2. Callioli, Domingues & Costa, 1990, p. 46
  3. Callioli, Domingues & Costa, 1990, p. 45
  4. Roman 2005, cap. 1, p. 27
  5. van der Waerden 1993, Cap. 19
  6. Bourbaki 1998, §II.1.1 . Bourbaki chamava os homomorfismos de grupo f(a) homotetias.
  7. Lang 1987, cap. I.1
  8. Lang 2002, cap. V.1
  9. Lang 1993, cap. XII.3., p. 335
  10. Lang 1987, cap. IX.1
  11. Lang 1987, cap. VI.3.
  12. Roman 2005, Theorem 1.9, p. 43
  13. Blass 1984
  14. Halpern 1966, pp. 670–673
  15. Artin 1991, Theorem 3.3.13
  16. Braun 1993, Th. 3.4.5, p. 291
  17. Stewart 1975, Proposition 4.3, p. 52
  18. Stewart 1975, Theorem 6.5, p. 74
  19. Roman 2005, cap. 2, p. 45
  20. Lang 1987, cap. IV.4, Corollary, p. 106
  21. Lang 1987, Exemplo IV.2.6
  22. Lang 1987, ch. VI.6
  23. Halmos 1974, p. 28, Ex. 9
  24. Lang 1987, Teorema IV.2.1, p. 95
  25. Roman 2005, Teorema 2.5 e 2.6, p. 49
  26. Lang 1987, cap. V.1
  27. Lang 1987, cap. V.3., Corollary, p. 106
  28. Lang 1987, Teorema VII.9.8, p. 198
  29. Roman 2005, cap. 8, p. 135–156
  30. Lang 1987, cap. IX.4
  31. Roman 2005, cap. 8, p. 140 .
  32. a b Callioli, Domingues & Costa, 1990, p. 50
  33. Callioli, Domingues & Costa, 1990, p. 159

Bibliografia[editar | editar código-fonte]

  • Callioli, Carlos A.; Hygino H. Domingues; Roberto C. F. Costa (1990). Álgebra Linear e Aplicações 6 ed. São Paulo: Atual. ISBN 9788570562975 
  • Noble, Ben; James W. Daniel (1986). Álgebra Linear Aplicada. Rio de Janeiro: Prentice-Hall do Brasil. ISBN 9788570540225 

Álgebra[editar | editar código-fonte]

Análise[editar | editar código-fonte]

Referências históricas[editar | editar código-fonte]

Referências extras[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Outros projetos Wikimedia também contêm material sobre este tema:
Wikcionário Definições no Wikcionário
Wikilivros Livros e manuais no Wikilivros