Norma (matemática)

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Uma circunferência centrada na origem de relativa a três normas distintas

Em matemática, uma norma consiste em uma função que a cada vetor de um espaço vetorial associa um número real não-negativo. O conceito de norma está intuitivamente relacionado à noção geométrica de comprimento.

Definição[editar | editar código-fonte]

Dado um espaço vetorial sobre o corpo dos números reais ou complexos, uma função é chamada de norma se, para quaisquer e todo :[1]

  • . Se esta condição não for atendida, a função será no máximo uma seminorma.
  • (desigualdade triangular)

Se o espaço vetorial tem uma norma, ele passa a ser chamado de espaço normado, e denotado por .

Métrica e topologia induzida[editar | editar código-fonte]

Toda norma induz de forma natural uma métrica em cujos valores são dados por:[2]

Também induz uma topologia localmente convexa que é gerada por todas as bolas:

Normas equivalentes[editar | editar código-fonte]

Duas normas e sobre o mesmo espaço vetorial são ditas equivalentes se existirem constantes reais positivas e tais que:

Quando duas normas são equivalentes, elas induzem a mesma topologia.

Normas em espaços de dimensão finita[editar | editar código-fonte]

Seja a representação de um vetor em ou .

As normas canônicas definidas nestes espaços são as chamadas normas :

O caso particular em que corresponde à norma euclidiana:

Outras normas podem ainda ser definidas, no entanto, pode-se demonstrar que todas elas serão equivalentes.

Norma matricial[editar | editar código-fonte]

Ver artigo principal: Norma matricial

Se o espaço vetorial considerado é aquele formado pelas matrizes reais ou complexas de ordem , denotado por , uma norma sobre esse espaço é chamada de norma matricial. Um exemplo de norma matricial é a norma 1, denotada definida como o máximo da soma módulo das entradas de cada linha, ou seja se então a norma do máximo da matriz é o número não negativo dado por

A norma do máximo da matriz , por exemplo, é[3]

Normas em espaços de dimensão infinita[editar | editar código-fonte]

Espaços LP[editar | editar código-fonte]

Ver artigo principal: Espaço Lp

As normas têm análogos em alguns espaços de dimensão infinita.

Notas[editar | editar código-fonte]

  1. SANTOS (2010), p.3, ex. 54.
  2. SANTOS (2010), p.60.
  3. Boldrini et. al, p. 342.

Referências[editar | editar código-fonte]

  • SANTOS, José Carlos. Introdução à Topologia. Departamento de Matemática - Faculdade de Ciências da Universidade do Porto. Junho de 2010, 171 páginas. Disponível em: <http://www.fc.up.pt/mp/jcsantos/PDF/Topologia.pdf>. Acesso em: 12 jan. 2010. Página 60.
  • Boldrini, José Luiz et. al. Álgebra Linear 3ª ed. Harbra [S.l.] p. 342. 

Ver também[editar | editar código-fonte]