Saltar para o conteúdo

Lema de Fatou

Origem: Wikipédia, a enciclopédia livre.
O matemático e astrônomo francês Pierre Fatou (1878-1929).

Em matemática o lema de Fatou é um importante resultado da teoria da medida. Normalmente é demonstrado partindo do teorema da convergência monótona e é aplicado para demonstrar o teorema da convergência dominada.

Seja uma seqüência de funções mensuráveis não negativas, então:

Demonstração

[editar | editar código-fonte]

Defina e .

formam uma seqüência não-decrescente de funções não-negativas e, portanto, pelo teorema da convergência monótona, temos:

Da definição de , temos ainda:

Tomando o ínfimo em , vale:

Passando ao limite em , segue:

Como, temos o resultado:

Seja uma seqüência de funções mensuráveis não negativas convergindo quase-sempre para uma função , tal que:

então: