Saltar para o conteúdo

Espaço de Hausdorff

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Separabilidade)

Um espaço de Hausdorff (ou espaço separado) é um espaço topológico no qual quaisquer dois pontos distintos têm vizinhanças disjuntas. Esta propriedade era uma dos axiomas da definição original de espaço topológico dada por Felix Hausdorff.

Os pontos x e y, separados por suas respectivas vizinhanças U e V.
  • Qualquer espaço métrico é de Hausdorff;
  • Qualquer espaço grosseiro com mais de um elemento não é de Hausdorff;
  • O espaço com a topologia não é separado: os pontos e podem ser separados um do outro mas não do ponto .
  • Num espaço de Hausdorff, o limite de uma sucessão, quando existe, é único;
  • Um subconjunto compacto de um espaço de Hausdorff é fechado;
  • Um espaço X é de Hausdorff se e só se a diagonal Δ = {(x,x) | xX} de X × X é fechada na topologia produto;
  • Qualquer espaço de Hausdorff é T1;
  • Um subconjunto de um espaço de Hausdorff é de Hausdorff;
  • Um produto de espaços de Hausdorff é de Hausdorff;
  • Se o espaço X tem um número finito de elementos então o espaço é Hausdorff se, e somente se, a topologia é discreta.

Relação com outros axiomas de separação

[editar | editar código-fonte]
  • Uma condição mais fraca que Hausdorff é a de um Espaço T1:
  • Uma condição mais forte que Hausdorff é ser um espaço de Urysohn ou Espaço T, em que dois pontos distintos x e y podem ser separados por vizinhanças fechadas distintas.
Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.