Distribuição de Cauchy

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde dezembro de 2009). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Distribuição de Cauchy
Cauchy pdf.svg
A curva roxa é a distribuição de Cauchy padrão
Cauchy cdf.svg
Função de distribuição acumulada da distribuição de Cauchy
Parâmetros
Suporte
f.d.p.
f.d.a.
Média indefinida
Mediana
Moda
Variância indefinida
Obliquidade indefinida
Curtose indefinida
Entropia
Função Geradora de Momentos não existe
Função Característica

A distribuição de Cauchy-Lorentz, assim chamada em homenagem a Augustin Cauchy e Hendrik Lorentz, é a distribuição de probabilidades dada pela função densidade de probabilidade

A sua média não é definida, logo ela também não tem desvio padrão. O seu segundo cumulante é infinito.

A distribuição de Cauchy pode ser simulada como a razão entre duas normais independentes.

Nome[editar | editar código-fonte]

Em probabilidade e estatística, esta distribuição é conhecida como a distribuição de Cauchy, enquanto que entre físicos, ela é conhecida como a distribuição de Lorentz ou como a distribuição (não-relativística) de Breit-Wigner (dos físicos Gregory Breit e Eugene Wigner).

Propriedades[editar | editar código-fonte]

Se X1, …, Xn forem variáveis aleatórias i.i.d. (independentes e identicamente distribuídas), cada uma com a distribuição de Cauchy. então a sua média aritmética (X1 + … + Xn)/n tem também a distribuição de Cauchy. Demonstra-se isso calculando-se a função característica da média:

Em que é a média. Este é um contra-exemplo para o Teorema Central do Limite, exibindo porque a hipótese da variância finita das parcelas deve ser mantida. Este também é um exemplo de uma versão generalizada do Teorema Central do Limite, mostrando propriedades das distribuições estáveis, do qual a Cauchy e a distribuição normal são casos particulares.

Versão multivariada k-dimensional[editar | editar código-fonte]

É fácil notar que a versão multivariada k-dimensional desta densidade é equivalente a uma densidade de Student Multivariada não-central quando temos somente 1 grau de liberdade:

onde e são uma matriz de covariância e um vetor de locação, respectivamente, parâmetros da densidade.

Ligações externas[editar | editar código-fonte]

Wiki letter w.svgEste artigo sobre matemática é mínimo. Você pode ajudar a Wikipédia expandindo-o.