Equação do quarto grau

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde setembro de 2012). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Searchtool.svg
Esta página foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa (desde setembro de 2012). Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a consistência e o rigor deste artigo.
Gráfico de um polinômio do quarto grau, com quatro raízes reais distintas

Em matemática, uma equação do quarto grau é uma equação polinomial monovariável de grau quarto. A forma geral de uma equação do quarto grau é dada por:

com

Com pois no contrário o polinômio seria de grau menor ou igual a três.

Exemplos[editar | editar código-fonte]

Existência de soluções[editar | editar código-fonte]

O Teorema fundamental da álgebra, uma equação quártica terá sempre quatro soluções (raízes), simples ou múltiplas no conjunto dos números complexos.

Formas especiais[editar | editar código-fonte]

Equação biquadrática[editar | editar código-fonte]

Ver artigo principal: Equação biquadrada

Uma equação biquadrática é uma equação do quarto grau que, quando reduzida, é apresentada da seguinte forma:

como

Esta equação pode ser reduzida a uma equação do segundo grau através seguinte mudança de variáveis:

onde

Cujas raízes em são descobertas pela Fórmula de Bhaskara:

logo: e

Produtos Notáveis[editar | editar código-fonte]

Toda equação do 4° grau que, na forma reduzida apresente coeficientes nulos, será um produto notável com as raízes em

  • Exemplo: quando reduzido fica na forma logo ou

Formula de Wilson x⁴=y²

O método de Ferrari[editar | editar código-fonte]

As soluções podem ser encontradas usando o método de Ferrari desenvolvido pelo matemático italiano Lodovico Ferrari.

Ferrari resolveu uma equação que, em linguagem moderna, pode ser escrita como:

Nota-se que a equação geral pode ser reduzida a este caso através da transformação e dividindo a equação resultante por

A partir daqui, o método consiste em transformar a equação em uma diferença de quadrados tal qual cuja solução pode ser obtida através dos métodos de resolução de equações do segundo grau.

No primeiro passo, o primeiro membro da equação, é transformado no quadrado baseado em ou seja,

Em seguida, somam-se termos em uma nova variável , porém de forma a que o primeiro membro não deixe de ser um quadrado. Para isto, além de somar , devemos somar também ou seja:

Reescrevendo:


O segundo membro da equação pode ser reescrito como onde e são soluções da equação quadrática

ou seja,

Para que a equação se torne uma diferença de quadrados, é necessário que seja um quadrado, então escreveremos que que necessita que a raiz quadrada na fórmula seja nula.


Em outras palavras, isto requer:

que, expandido, gera a equação do terceiro grau auxiliar:

onde apenas uma raíz é necessária (recomenda-se utilizar uma raiz real).


Retomando o cálculo da incógnita temos que


Com isso a equação pode ser reescrita como ou

que resulta em uma diferença de dois quadrados:

Que gera duas equações quadráticas que podem ser resolvidas pelos métodos de resolução de equações de segundo grau nas equações seguintes:



Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.
Portal A Wikipédia possui o
Portal da Matemática.