Conjunto aberto

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa

Em topologia, um conjunto diz-se aberto se uma pequena variação de um ponto desse conjunto mantém-no no conjunto.

Definição[editar | editar código-fonte]

Espaços topológicos[editar | editar código-fonte]

Ver artigo principal: Espaço topológico

Em topologia, a noção de aberto é primitiva: uma topologia em um conjunto é definida como um subconjunto do conjunto das partes de (satisfazendo determinadas propriedades), e cada elemento de é chamado de um aberto ou conjunto aberto.

Espaços métricos[editar | editar código-fonte]

Ver artigo principal: Espaço métrico

Em um espaço métrico, um subconjunto é dito aberto se ele for a vizinhança de cada um de seus elementos.[1] Ou seja, dado um espaço métrico , um subconjunto de é aberto se, para cada ponto , existe tal que a bola aberta ainda esteja contida em .[1]

Propriedades[editar | editar código-fonte]

  • Em um espaço topológico ou espaço métrico , o conjunto vazio e o próprio conjunto são abertos.
  • Um conjunto é aberto se e só se coincidir com o seu interior.
  • Um conjunto é aberto se e só se o seu complementar for fechado.
  • A interseção de dois conjuntos abertos é um conjunto aberto.
  • A união de qualquer quantidade (mesmo infinita) de conjuntos abertos é um conjunto aberto.

Abertos de [editar | editar código-fonte]

Como (com a topologia usual) é um espaço métrico, um subconjunto de é aberto se, para cada ponto , existe tal que .

Em , um subconjunto é aberto se e só for reunião (possivelmente infinita) de intervalos abertos. O próprio conjunto dos números reais é um conjunto aberto.

Referências

  1. a b Ahlfors 1979, p. 51-52

Bibliografia[editar | editar código-fonte]