Funções definidas em trechos

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Em matemática, uma função definida em trecho, também conhecida como função definida por partes, é uma função definida por várias sentenças abertas, cuja definição depende do valor da variável independente. Cada uma das sentenças que definem a função estão ligadas a subdomínios disjuntos entre si que estão contidos no domínio da função.[1]

A palavra trecho é também usada para descrever qualquer propriedade de uma função definida em trechos que sustentam-se para cada parte mas podem não sustentar-se para o domínio inteiro da função. Uma função é diferenciável em trechos ou diferenciável continuamente em trechos se cada parte é diferenciável completamente em seu domínio. Em análise complexa, a noção de uma derivada pode ser substituída por aquela da subderivada para funções em trechos. Apesar das "partes" em uma definição em trechos não necessitarem ser intervalos, uma função não é chamada "linear em trechos" ou "contínua em trechos" ou "diferenciável em trechos" exceto se as partes sejam intervalos.

Notação e interpretação[editar | editar código-fonte]

Gráfico da função valor absoluto, y = |x|.

Funções em trechos são definidas usando notação comum para funções, onde o corpo da função é um conjunto de funções e subdomínios associados.

A principal função definida por partes é a função modular, que define o módulo (ou valor absoluto) de um número real.

Eis aqui sua lei de formação:

|x| \equiv f(x) = \begin{cases}
  -x, &x < 0 \\
  x,  &x \ge 0
\end{cases}

Observe que, para todos os valores de x menores que zero, a primeira função (−x) é usada, a qual anula o sinal do valor de entrada, fazendo com que os números negativos fiquem positivos. Também observe que, para todos os valores de x maiores ou iguais a zero, a segunda função (x) é usada, a qual o valor de saída é igual ao valor de entrada.

Considere-se a função em trechos f(x) definida em certos valores de x:

x f(x) Function used
−3 3 x
−0.1 0.1 x
0 0 x
1/2 1/2 x
5 5 x

Então, de maneira a definir uma função em trechos em um dado valor de entrada, o subdomínio apropriado necessita ser escolhido de maneira a selecionar a função correta e produzir o correto valor resultante.

Continuidade[editar | editar código-fonte]

Uma função em trechos compreendendo diferentes funções quadráticas em ambos os lados x_0.

Uma função em trechos é contínua em um dado intervalo se é definida completamente neste intervalo, suas funções constituintes apropriadas são contínuas no intervalo, e não existe descontinuidade em cada ponto final dos subdomínios dentro do intervalo.

A função representada, por exemplo, é completamente contínua em trechos de seus subdomínios, mas não é contínua no domínio inteiro. A função representada contém um salto de descontinuidade em x_0.

Exemplos comuns[editar | editar código-fonte]

  • Iezzi, Gelson; Murakami, Carlos (2004). Fundamentos de Matemática Elementar 1, conjuntos, funções (São Paulo: Atual). ISBN 9788535704556.