Triângulo retângulo
Triângulo retângulo, em geometria, é um triângulo que possui um ângulo reto e outros dois ângulos agudos, para tanto basta que tenha um ângulo reto (90°), pois a soma dos três ângulos internos é igual a um ângulo raso (180°). É uma figura geométrica muito usada na matemática, no cálculo de áreas, volumes e no cálculo algébrico. Em um triângulo retângulo, sabendo-se as medidas de dois lados ou a medida de um lado mais a medida de um ângulo agudo, é possível calcular a medida dos demais lados e ângulos. A área de um triângulo retângulo é dada pela metade do produto dos menores lados. A relação entre os lados e ângulos de um triângulo retângulo é a base da trigonometria.
Índice
Elementos do triângulo retângulo[editar | editar código-fonte]
Um triângulo retângulo é composto por quatro principais elementos:
- Catetos;
- Hipotenusa;
- Altura relativa à hipotenusa;
- Projeções dos catetos.
Catetos[editar | editar código-fonte]
Os catetos são os menores lados do triângulo retângulo. Eles formam o ângulo de 90°.
Altura relativa à hipotenusa[editar | editar código-fonte]
A altura relativa à hipotenusa é a distância entre a hipotenusa e o vértice oposto.
Projeções dos catetos[editar | editar código-fonte]
A altura relativa à hipotenusa divide-a em duas partes, denominadas projeções dos catetos.
Relações métricas do triângulo retângulo[editar | editar código-fonte]
As relações métricas do triângulo retângulo são quatro. Os três triângulos formados ao traçar a altura relativa à hipotenusa são retângulos e semelhantes.
- A hipotenusa é igual à soma das projeções.
Por semelhança de triângulos, temos que:
- O quadrado da altura relativa à hipotenusa é igual ao produto das projeções dos catetos.
- :
- O quadrado de um cateto é igual ao produto entre a sua projeção (que se encontra do seu lado) e a hipotenusa.
- :
- :
- O produto entre a hipotenusa e a altura relativa a ela é igual ao produto dos catetos.
- :
Teorema de Pitágoras[editar | editar código-fonte]
O Teorema de Pitágoras diz que:
A soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.— Pitágoras
ou, em linguagem matemática:
- hipotenusa (AB)² = cateto (BC)² + cateto (CA)²
Relações trigonométricas do triângulo retângulo[editar | editar código-fonte]
Outra maneira de calcular a medida dos lados de um triângulo retângulo é através da medida de um ângulo e um lado, usando a Trigonometria. As principais relações trigonométricas são: Seno, Cosseno e Tangente. Há outras três: Cotangente, Secante e Cossecante.
Seno de um ângulo[editar | editar código-fonte]
É dado pela razão entre os lados que formam o outro ângulo agudo, dado pela ordem :
Cosseno de um ângulo[editar | editar código-fonte]
Cosseno: É a razão entre a medida do cateto adjacente e a medida da hipotenusa e é dado pela razão entre os lados que formam o próprio ângulo agudo, dado pela ordem::
Tangente de um ângulo[editar | editar código-fonte]
É dado pela razão entre o Seno e o Cosseno de um ângulo, ou entre os catetos, dado pela seguinte ordem::
Cotangente de um ângulo[editar | editar código-fonte]
É dado pela razão entre o Cosseno e o Seno de um ângulo, ou entre os catetos, dado pela seguinte ordem:
Secante de um ângulo[editar | editar código-fonte]
É dado pelo inverso do cosseno desse ângulo ou entre os lados que formam o próprio ângulo, dado na seguinte ordem:
Cossecante de um ângulo[editar | editar código-fonte]
É dado pelo inverso do seno desse ângulo ou entre os lados que formam o outro ângulo agudo, dado na seguinte ordem:
Ângulos notáveis[editar | editar código-fonte]
Graus | Radianos | sen | cos | tg | cotg | sec | cossec |
---|---|---|---|---|---|---|---|
0 | 0 | ||||||
30 | |||||||
45 | |||||||
60 | |||||||
90 |
Circunferência inscrita em um triângulo retângulo[editar | editar código-fonte]
O diâmetro (d) de uma circunferência inscrita num triângulo rectângulo (a b c) é igual à soma dos catetos, menos a hipotenusa, representado pela seguinte fórmula:
- cateto
- cateto
- hipotenusa
- raio da circunferência inscrita
- diâmetro da circunferência inscrita
Substituindo I e II em III, teremos
Como: