Números primos entre si

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Os números 4 e 9 são primos entre si porque a diagonal não intercepta nenhum dos pontos reticulados

Chamamos de números primos entre si (ou coprimos), um conjunto de números onde o único divisor comum a todos eles for o número 1.

Explicação[editar | editar código-fonte]

Um conjunto de números inteiros é chamado de mutuamente primo se não existir um inteiro maior do que 1 que divida todos os elementos. Por exemplo, os inteiros 30, 42, 70 e 105 são mutuamente primos. Entretanto, aos pares, não são primos entre si.

Esta definição é transferida para outras áreas. Por exemplo, dois polinómios com coeficientes inteiros são primos entre si se não houver um polinômio não-constante que divida ambos.

O número de inteiros positivos menores que n, que são primos com n, é dado pela função totiente de Euler

Exemplo[editar | editar código-fonte]

Verificar se são coprimos os números 20 e 21:

  • Divisores de 20: 1, 2, 4, 5, 10 e 20.
  • Divisores de 21: 1, 3, 7 e 21.
  • Resposta: Os números 20 e 21 são primos entre si, pois o único divisor comum entre os dois é o 1.

Pode-se provar que:

  • Para n > 1, n e n + 1 são primos entre si.
  • Para n > 1 ímpar, n e n + 2 são primos entre si.

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.