Axiomas de probabilidade

Origem: Wikipédia, a enciclopédia livre.

Os axiomas da probabilidade ou os axiomas de Kolmogorov são uma definição geralmente usada para se referir para as três propriedades de uma série de subconjuntos de , chamado de -álgebra (pronuncia-se sigma-álgebra ou campo de Borel), denotado por , se satisfaz às propriedades:

  • (o conjunto vazio é um elemento de );
  • Se ;
  • Se A1, A2, ....[1].

Na teoria da probabilidade de Kolmogorov, a probabilidade de algum evento , denotado por , geralmente é definida tal que satisfaz os axiomas de Kolmogorov. O termo é em homenagem ao famoso matemático russo Andrey Kolmogorov, que são descritos abaixo.[2]

Essas premissas podem ser resumidas como: seja (Ω, F, P) um espaço de medida intervalo com P (Ω) = 1. Então (Ω, F, P) é um espaço de probabilidade, com espaço amostral Ω, espaço de evento F e medida de probabilidade P. Uma abordagem alternativa para formalizar a probabilidade, favorecido por alguns Bayesianos, é dado pelo Teorema de Cox.

Axiomas[editar | editar código-fonte]

Primeiro axioma[editar | editar código-fonte]

A probabilidade de um evento é um número real não negativo:

Onde é o espaço de evento (-álgebra). Em particular, é sempre finito, em contraste com mais geral da Teoria da Medida. As teorias que atribuem probabilidade negativa relaxam o primeiro axioma.

Segundo axioma[editar | editar código-fonte]

Este é o pressuposto da unidade de medida: é que a probabilidade de que algum evento elementar em todo o espaço da amostra irá ocorrer é 1. Mais especificamente, não há eventos elementares fora do espaço amostral.

Este é muitas vezes esquecido em alguns cálculos de probabilidade equivocadas, se você não pode definir com precisão todo o espaço amostral, então a probabilidade de qualquer subconjunto não pode ser definido.

Terceiro axioma[editar | editar código-fonte]

Este é o pressuposto de σ-aditividade:

Qualquer sequência contável de conjuntos disjuntos (sinônimo de eventos mutuamente exclusivos) satisfaz

Alguns autores consideram apenas finitamente e aditivos os espaços de probabilidade, caso em que se necessita apenas de uma Álgebra de conjuntos, em vez de um σ-álgebra. Na Distribuição Quasiprobability, em geral é de relaxar o terceiro axioma.

Consequências[editar | editar código-fonte]

A partir dos axiomas de Kolmogorov , pode-se deduzir outras regras úteis para cálculo de probabilidades.

Monotonia[editar | editar código-fonte]

A probabilidade do conjunto vazio[editar | editar código-fonte]

O limite numérico[editar | editar código-fonte]

Ele segue imediatamente a partir da propriedade de monotonicidade:

Provas[editar | editar código-fonte]

As provas dessas propriedades são interessantes e esclarecedoras. Eles ilustram o poder do terceiro axioma, e sua interação com os restantes dois axiomas. Ao estudar teoria da probabilidade axiomática, muitas conseqüências profundas seguem a partir desses três meros axiomas. A fim de verificar a propriedade de monotonicidade, partimos: and ,Quando for . É fácil de ver que os conjuntos .São disjuntos dois a dois e . Assim, obtemos a partir do terceiro axioma de que:

Desde a esquerda o lado desta equação é uma série de números não-negativos, e que converge para:

o qual é finito, obtêm-se ambos e .

A segunda parte da declaração é visto por contradição se: em seguida o lado esquerdo não é inferior a:

Se obtemos uma contradição, para que a soma não ultrapasse que é finito. Assim, . Nós mostramos como um subproduto da prova de monotonia que .

Mais consequências[editar | editar código-fonte]

Outra propriedade importante é:

Esta é a chamada lei além de probabilidade, ou a regra da soma. Ou seja, a probabilidade de que A' ou' B irá acontecer é a soma das probabilidades de que A vai acontecer e que B vai acontecer, menos a probabilidade de que ambos A' e' B vão acontecer. Isso pode ser estendido para o princípio da inclusão-exclusão.

Ou seja, a probabilidade de que qualquer evento não acontecer é 1 menos a probabilidade de que isso acontecerá.

Exemplo simples: moeda-lance[editar | editar código-fonte]

Considere um lançamento único de uma moeda, assuma que a moeda será ou cara (H) ou coroa (T) (mas não ambos). A suposição é feita para saber se a moeda é honesta (Isto é, sua distribuição de massa é igualitária e sem deformidades que a faça tender para um dos lados). Podemos definir:

Axiomas de Kolmogorov implicam que:

A probabilidade de cara ou coroa é 1.

A probabilidade de cara mais coroa é 1.

A soma da probabilidade de cara e a probabilidade de coroa é 1.

Ver também[editar | editar código-fonte]

Referências

  1. Probability Theory por Faming Liang publicado pelo "Department of Statistics, Texas A&M University"
  2. FOUNDATIONS. OF THE. THEORY OF PROBABILITY por A.N. KOLMOGOROV. publicado por "CHELSEA PUBLISHING" Segunda English Edição (1956)

Bibliografia[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Wikilivros