Binómio de Newton

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Abril de 2012). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Em matemática, binómio de Newton (português europeu) ou binômio de Newton (português brasileiro) permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto deve-se salientar que o Binômio de Newton não foi o objeto de estudos de Isaac Newton. Na verdade o que Newton estudou foram regras que valem para quando o expoente n é fracionário ou inteiro negativo, o que leva ao estudo de séries infinitas.[1]

Casos particulares do Binômio de Newton são:

Notação e fórmula[editar | editar código-fonte]

O teorema do binômio de Newton se escreve como segue:

Os coeficientes são chamados coeficientes binomiais e são definidos como:

onde e são inteiros, e é o fatorial de x.

O coeficiente binomial corresponde, em análise combinatória, ao número de combinações de n elementos agrupados k a k.

O triângulo de Pascal[editar | editar código-fonte]

Ver artigo principal: Triângulo de Pascal

Um algoritmo simples para calcular os coeficientes binomiais é o triângulo de Pascal.

O triângulo de Pascal é um triângulo numérico infinito formado por coeficientes binomiais onde representa o número da linha (posição vertical) e representa o número da coluna (posição horizontal).

A construção do triângulo faz-se de forma que cada elemento do triângulo de Pascal seja igual à soma dos elementos imediatamente acima e à direita com o elemento imediatamente acima e à esquerda. O elemento da primeira linha e primeira coluna é 1.

O princípio do triângulo de Pascal é a relação de Stifel também conhecida como igualdade do triângulo de Pascal:

O triângulo de Pascal.

Esta fórmula e o triângulo de Pascal são muitas vezes atribuídos a Blaise Pascal, que os descreveu no século XVII. Já eram, no entanto, conhecidos do matemático Chinês Yang Hui no século XIII. O matemático persa Omar Khayyám, pode ter sido o primeiro a descobrir.

Por exemplo, o desenvolvimento de diversos binômios através dessa técnica:

Demonstração do teorema do Binômio de Newton[editar | editar código-fonte]

Antes de começar, vale lembrar que:

(1)

Sejam x, y elementos de um anel comutativo( xy=yx) e n um inteiro não-negativo.

Demonstraremos por indução matemática.

Base:
Recorrência:

Seja n um inteiro maior ou igual a 1, mostraremos que a relação para n implica a relação para n+1:

Da hipótese de indução:

Por distributividade de produto sob a soma:

Que pode ser reescrito usando (1):

Usando a formula do triângulo de Pascal:

Reagrupando o somatório:

E segue o resultado.

Aplicações[editar | editar código-fonte]

O binómio de Newton pode ser usado para derivar diversas expressões matemáticas, através da escolha adequada de x e y. Por exemplo:

  • onde são os polinómios de Bernstein.
Recomendado:


Referências

  1. GARBI, Gilberto G. O Romance das Equações Algébricas. Editora Livraria da Física. São Paulo, 2007. ISBN 85-88325-76-4

Ver também[editar | editar código-fonte]