Fotossíntese: diferenças entre revisões
m Revertidas edições por 187.114.82.92 para a última versão por Salebot (usando Huggle) |
|||
Linha 3: | Linha 3: | ||
[[Ficheiro:Fotossíntese.jpg|thumb|right|275px|Representação da fotossíntese.]] |
[[Ficheiro:Fotossíntese.jpg|thumb|right|275px|Representação da fotossíntese.]] |
||
'''Fotossíntese''' é um processo fisioquímico realizado pelos [[vegetais]] clorofilados. Estes seres sintetizam dióxido de carbono e água, obtendo glicose, celulose e amido através de energia luminosa. 12H<sub>2</sub>O + 6CO<SUB>2</SUB> → 6O<SUB>2</SUB> + 6H<sub>2</sub>O + C<SUB>6</SUB>H<SUB>12</SUB>O<SUB>6</SUB>. |
'''Fotossíntese''' é um processo fisioquímico realizado pelos [[vegetais]] clorofilados. Estes seres sintetizam dióxido de carbono e água, obtendo glicose, celulose e amido através de energia luminosa. 12H<sub>2</sub>O + 6CO<SUB>2</SUB> → 6O<SUB>2</SUB> + 6H<sub>2</sub>O + C<SUB>6</SUB>H<SUB>12</SUB>O<SUB>6</SUB>.O MEMI É A MELHOR CLASSE. EDITADO POR ANDERSON O GAY |
||
Este é um processo do [[anabolismo]], em que a planta acumula [[energia]] a partir da luz para uso no seu [[metabolismo]], formando [[adenosina tri-fosfato]], o ATP, a moeda energética dos organismos vivos. |
Este é um processo do [[anabolismo]], em que a planta acumula [[energia]] a partir da luz para uso no seu [[metabolismo]], formando [[adenosina tri-fosfato]], o ATP, a moeda energética dos organismos vivos. |
Revisão das 16h42min de 25 de julho de 2011
Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (Janeiro de 2011) |
Fotossíntese é um processo fisioquímico realizado pelos vegetais clorofilados. Estes seres sintetizam dióxido de carbono e água, obtendo glicose, celulose e amido através de energia luminosa. 12H2O + 6CO2 → 6O2 + 6H2O + C6H12O6.O MEMI É A MELHOR CLASSE. EDITADO POR ANDERSON O GAY
Este é um processo do anabolismo, em que a planta acumula energia a partir da luz para uso no seu metabolismo, formando adenosina tri-fosfato, o ATP, a moeda energética dos organismos vivos.
A fotossíntese inicia a maior parte das cadeias alimentares na Terra. Sem ela, os animais e muitos outros seres heterotróficos seriam incapazes de sobreviver porque a base da sua alimentação estará sempre nas substâncias orgânicas proporcionadas pelas plantas verdes.
A relação da cor verde das plantas com a luz
Aristóteles tinha observado e descrito que as plantas necessitavam de luz solar para adquirir a sua cor verde. Só em 1771, o estudo do processo fotossintético começou a ser observado por Joseph Priestley. Este químico inglês, confinando uma planta numa redoma de cristal comprovou a produção de uma substância que permitia a combustão e que, em certos casos, avivava a chama de um carvão em brasa. Posteriormente, concluiu-se que a substância observada era o gás oxigênio.
A descoberta da fotossíntese
Na segunda metade do século XVIII, Jan Ingenhousz, físico-químico neerlandês, suspeitou que o dióxido de carbono do ar era utilizado como nutriente pelas plantas. A comprovação deu-se em seguida por diversos químicos daquele século que repetiram as experiências do cientista holandês.
A incorporação da água pelas plantas
Nicolas-Théodore de Saussure, já no início do século XIX descobriu que os vegetais incorporavam água em seus tecidos. Com o passar do tempo, os avanços no campo óptico e as tecnologias de estudo aprimoradas, possibilitaram o conhecimentos em relação a nutrição vegetal.
A descoberta da retirada de nutrientes do solo
Uma observação importante foi que o azoto, assim como diversos sais e minerais, era retirado do solo pelas plantas e que a energia proveniente do Sol se transformava em energia química, ficando armazenada numa série de produtos em virtude de um processo que então acabou por ser chamado de fotossíntese.
A substância chamada de clorofila foi isolada na segunda década do século XIX. Ainda naquele século, descobriu-se que a clorofila era a responsável pela cor verde das plantas, além de desempenhar um papel importante na síntese da matéria orgânica. Julius von Sachs demonstrou que a clorofila se localizava nos chamados organelos celulares, que, por meio de estudos mais apurados, foram chamados de cloroplastos.
A reprodução do ciclo da clorofila em laboratório
Ao avançarem as técnicas bioquímicas, em 1954 foi possível o isolamento e extracção destes organelos. Foi Daniel Israel Arnon quem obteve cloroplastos a partir das células do espinafre, conseguindo reproduzir em laboratório as reacções completas da fotossíntese.
As etapas da fotossíntese
Com estas técnicas, descobriu-se, por exemplo, que a fotossíntese ocorre ao longo de duas etapas:
- A fase fotoquímica, fase luminosa ou fase clara (fase dependente da luz solar) é a primeira fase do processo fotossintético. A energia luminosa é captada por meio de pigmentos fotossintetizantes, capazes de conduzi-la até o centro de reação. Tal centro é composto por um par de clorofilas 'a' também denominado P700 porque absorve a onda luminosa com 700 nanometros de comprimento. Os elétrons excitados da P700 saem da molécula e são transferidos para uma primeira substância aceptora de elétrons, a ferredoxina. Esta logo os transfere para outra substância, e assim por diante, formando uma cadeia de transporte de elétrons. Tais substâncias aceptoras estão presente na membrana do tilacóide. Nessa transferência entre os aceptores, os elétrons vão liberando energia gradativamente e esta é aproveitada para transportar hidrogênio iônico de fora para dentro do tilacóide, reduzindo o pH do interior deste. A redução do pH ativa o complexo protêico "ATP sintetase". O fluxo de hidrogênios iônicos através do complexo gira, em seu interior, uma espécie de "turbina proteica", que promove a fosforilação de moléculas de adenosina difosfato dando origem à adenosina trifosfato. Ao chegarem ao último aceptor, os elétrons têm nível energético suficientemente baixo e retornam ao par de clorofilas 'a', fala-se em fotofosforilação cíclica.
- Porém, existe outra forma de fosforilação, a fotofosforilação acíclica onde os elétrons das moléculas de clorofila 'a' (P700), excitados pela luz, são captados pela ferredoxina, mas ao em vez de passarem pela cadeia transportadora são captados pelo NADP (nicotinamida adenina dinucleotídeo Fosfato) e não retornam para o P700. Este fica temporariamente deficiente de elétrons. Esses elétrons são repostos por outros provinientes de outro fotossistema onde o par de clorofilas 'a', dessa vez P680, excitado pela energia luminosa, libera elétrons que são captados por uma primeira substância aceptora: a plastoquinona. Em seguida passa aos citocromos e plastocianina até serem captados pelo P700, que se recompõe. Este processo de transporte também promove a síntese do ATP. Já o P680 fica deficiente de elétrons. Esses elétrons serão repostos pela fotólise da água. A quebra da molécula da água por radiação (fotólise da água) produz iôns de hidrogênios e hidróxidos. Os elétrons dos iôns hidróxidos são utilizados para recompor o P680 e os iôns hidrogênio são aceptados pelo NADP, com isso ocorre a formação de água oxigenada (H2O2) oriunda da reação de síntese entre as hidroxilas. A água oxigenada é decomposta pela célula em água e O2 sendo este último liberado do processo como resíduo. Com a repetição do processo forma-se o aporte energético e de NADPHs necessários para a fase escura.
Equação: 12H2O + 6NADP + 9ADP + 9P -(luz)→ 9ATP + 6NADPH2 + 3O2+ 6H2O
- A fase química ou "fase escura", onde se observa um ciclo descoberto pelos cientistas Melvin Calvin, Andrew Benson e James Bassham. Nessa fase chamada de ciclo de Calvin ou ciclo das pentoses, que ocorre no estroma do cloroplasto, o tilacóide fornece ATP e NADPH2 ao estroma do cloroplasto, onde se encontra a pentose (ribulose fosfato), essa pentose ativada por um fosfato, fixa o carbono que provém do dióxido de carbono do ar sob a ação catalisadora da "rubisco" (ribulose bifosfato carboxilase-oxidase) e em seguida é hidrogenada pelo NAPH2 formando o aldeído que dará origem à glicose. Para a síntese de uma molécula de glicose são fixadas seis de dióxido de carbono, permitindo que o processo recicle a ribulose fosfato. devolvendo-a ao estroma. Desta fase resulta a formação de compostos orgânicos como a glicose, necessária à atividade da planta. Esta fase é denominada fase escura, no entanto é um termo utilizado de forma inadequada pois para a "rubisco" entrar em atividade determinando a fixação do CO2 atmosférico para a formação de moléculas de glicose, ela precisa estar num estado reduzido, e para isso acontecer é necessário que a luz esteja presente.
Equação: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Plantas jovens consomem mais dióxido de carbono e libertam mais oxigénio, pois o carbono é incorporado a sua estrutura física durante o crescimento.
É importante realçar que a fase escura não ocorre apenas à noite ou na ausência de luz, o nome refere-se ao facto desta fase não necessitar da luz para funcionar. Ela acontece logo após a fase clara numa reação em cadeia até que o substrato se esgote.
A equação geral da formação de glicose é resultado da soma das duas equações:
Equação simplificada da fase fotoquímica: 12H2O + 12NADP + 18ADP + 18P -(luz)→ 18ATP + 12NADPH2 + 6O2
Equação simplificada da fase química: 6CO2 + 12NADPH2 + 18ATP -(enzimas)→ 12NADP + 18ADP + 18P + 6H2O + C6H12O6
Somando-as e simplificando, obtem-se a equação geral da fotossíntese: 12H2O + 6CO2 → 6O2 +C6H12O6 + 6H2O
Organismos fotossintetizadores
Além das plantas verdes, incluem-se entre os organismos fotossintéticos, algumas microalgas (como as diatomáceas e as euglenoidinas), as cianófitas (algas verde-azuladas) e diversas bactérias.
Factores que afectam a fotossíntese
- Comprimento de onda e intensidade da luz: A velocidade da fotossíntese está diretamente relacionada com a quantidade de luz, até ser atingido o nível de saturação.
- Concentração de dióxido de carbono: É geralmente o fator limitante da fotossíntese para as plantas terrestres em geral, devido a sua baixa concentração na atmosfera, que é em torno de 0,04%.
- Temperatura: Para a maioria das plantas, a temperatura ótima para os processos fotossintéticos está entre 30 e 38 °C . Acima dos 45 °C a velocidade da reação decresce, pois cessa a atividade enzimática.
- Água: A água é fundamental como fonte de hidrogênio para a produção da matéria orgânica. Em regiões secas as plantas têm a água como um grande fator limitante.
- Morfologia foliar
Ponto de compensação fótico
É chamado "ponto de compensação fótico" o instante em que as velocidades de fotossíntese e respiração são exatamente as mesmas. Neste instante toda a glicose produzida na fotossíntese é "quebrada" na respiração, e todo dióxido de carbono(CO2) gasto na fotossíntese é produzido na respiração. O ponto de compensação acontece para manter o sistema fotossintético ativo, dissipando parte da energia luminosa recebida pela planta, permitindo sua sobrevivência nestas condições estressantes.
A importância da fotossíntese
A importância da fotossíntese para a vida na Terra é enorme. A fotossíntese é o principal processo de transformação de energia na biosfera. Ao alimentarmo-nos, parte das substâncias orgânicas, produzidas graças à fotossíntese, entram na nossa constituição celular, enquanto outras (os nutrientes energéticos) fornecem a energia necessária às nossas funções vitais, como o crescimento e a reprodução. Além do mais, ela nos fornece oxigênio para a respiração.
Subprodutos remotos da fotossíntese
De acordo com a teoria da geração orgânica do petróleo, indiretamente energia química presente no petróleo e no carvão, que são utilizados pelo ser humano como combustíveis, têm origem na fotossíntese, pois, são produtos orgânicos provenientes de seres vivos (plantas ou seres que se alimentavam de plantas) de outras eras geológicas.
- Asimov, Isaac (1968). Photosynthesis. New York, London: Basic Books, Inc. ISBN 0-465-05703-9
- Bidlack JE; Stern KR, Jansky S (2003). Introductory plant biology. New York: McGraw-Hill. ISBN 0-07-290941-2
- Blankenship RE (2008). Molecular Mechanisms of Photosynthesis 2nd ed. [S.l.]: John Wiley & Sons Inc. ISBN 0-470-71451-4
- Govindjee (1975). Bioenergetics of photosynthesis. Boston: Academic Press. ISBN 0-12-294350-3
- Govindjee Beatty JT,Gest H, Allen JF (2006). Discoveries in Photosynthesis. Col: Advances in Photosynthesis and Respiration. 20. Berlin: Springer. ISBN 1-4020-3323-0
- Gregory RL (1971). Biochemistry of photosynthesis. New York: Wiley-Interscience. ISBN 0-471-32675-5
- Rabinowitch E, Govindjee (1969). Photosynthesis. London: J. Wiley. ISBN 0-471-70424-5
- Reece, J, Campbell, N (2005). Biology. San Francisco: Pearson, Benjamin Cummings. ISBN 0-8053-7146-X
Predefinição:Portal-biologia Predefinição:Portal-bioquímica
Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA Predefinição:Link FA