Congruência (geometria)

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Searchtool.svg
Esta página ou secção foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa (desde fevereiro de 2011). Se tem algum conhecimento sobre o tema, por favor, verifique e melhore a consistência e o rigor deste artigo. Considere utilizar {{revisão-sobre}} para associar este artigo com um WikiProjeto e colocar uma explicação mais detalhada na discussão.
Broom icon.svg
As referências deste artigo necessitam de formatação (desde abril de 2013). Por favor, utilize fontes apropriadas contendo referência ao título, autor, data e fonte de publicação do trabalho para que o artigo permaneça verificável no futuro.
NoFonti.svg
Este artigo ou se(c)ção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde abril de 2013). Por favor, adicione mais referências e insira-as corretamente no texto ou no rodapé. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Um exemplo de congruência. As duas figuras à esquerda são congruentes, enquanto que a Terceira é similar a elas. A última figura não é congruente nem similar às anteriores. Note que a congruência altera algumas propriedades, tais como localização e orientação, mas mantém outras sem modificação, como a distância entre pontos e os ângulos. As propriedades não modificadas são chamadas invariantes.

A congruência é um conceito geométrico. Em geometria, duas figuras são congruentes se elas possuem a mesma forma e tamanho. Mais formalmente, dois conjuntos de pontos geométricos são ditos “congruentes” se, e somente se, um pode ser transformado no outro por isometria, ou seja, uma combinação de translações, rotações e reflexões. O conceito associado de similaridade admite uma mudança no tamanho entre duas figuras similares.

Dois ângulos são congruentes se, sobrepostos um sobre o outro, todos os seus elementos coincidem. Nos paralelogramos, os lados paralelos são congruentes, e os dois ângulos opostos pelo vértice são sempre congruentes. Num triângulo equilátero, todos os lados e ângulos são congruentes; nos triângulos isósceles, apenas os lados iguais e os ângulos da base são congruentes.

Definição de congruência em geometria analítica[editar | editar código-fonte]

Em um sistema Euclideano, o conceito de congruência é fundamental: é equivalente ao conceito de igualdade entre números. Em geometria analítica, a congruência pode ser definida intuitivamente da seguinte forma: o mapeamento de figuras em um sistema de coordenadas cartesianas são congruentes se e somente se para quaisquer dois pontos do primeiro mapeamento, a distância Euclideana entre eles é igual à distância Euclideana entre os pontos correspondentes no segundo mapeamento.

Uma definição mais formal pode ser dada por: dois subconjuntos “A” e “B” do espaço Euclideano Rn são chamados congruentes se existir uma isometria f : RnRn (um elemento do grupo Euclideano E(n)) tal que f(A) = B. Congruência é uma relação de equivalência.

Congruência de segmentos de reta[editar | editar código-fonte]

Dois segmentos de reta são congruentes quando possuem o mesmo comprimento.

Congruência de ângulos[editar | editar código-fonte]

Dois ângulos são congruentes quando possuem a mesma medida ou "abertura".

Congruência de triângulos[editar | editar código-fonte]

A forma do triângulo é determinado até a congruência pela especificação de dois lados e o ângulo entre eles (LAL), dois ângulos e o lado entre eles (ALA) ou dois ângulos e um lado adjacente correspondente (AAL). Entretanto, especificando-se dois lados e um ângulo adjacente (LLA) pode levar a dois triângulos distintos.

Dois triângulos são congruentes se seus lados correspondentes (ou "homólogo") forem congruentes e seus ângulos correspondentes ("homólogos") forem congruentes.

Se o triângulo ABC é congruente com o triângulo DEF, a relação pode ser escrita matematicamente como:

\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}

Em muitos casos, é suficiente estabelecer a igualdade entre três partes correspondentes e utilizar um dos seguintes resultados para deduzir a congruência de dois triângulos:

Determinando a congruência[editar | editar código-fonte]

A evidência da congruência entre dois triângulos no espaço Euclideano pode ser obtida através das seguintes comparações:[1]

  • LAL (Lado-Ângulo-Lado): se dois lados dos dois triângulos forem congruentes e o ângulo entre estes lados for congruente, então os triângulos são congruentes.
  • LLL (Lado-Lado-Lado): Se os dois triângulos apresentarem os três lados congruentes, então os triângulos são congruentes .
  • ALA (Ângulo-Lado -Ângulo): Se dois triângulos possuem um lado e dois ângulos adjacentes a este lado respectivamente congruentes, então os triângulos são congruentes.
  • AAL (Ângulo-Ângulo-Lado): Se dois triângulos possuirem um ângulo lado congruente, o ângulo oposto a este lado e o ângulo adjacente ao lado congruentes, então os triângulos são congruentes.
  • RHL (Ângulo reto-Hipotenusa-Lado): Se dois triângulos retângulos possuírem hipotenusas congruentes e um cateto congruente, então os triângulos são congruentes.

Referências

Ícone de esboço Este artigo sobre geometria é um esboço. Você pode ajudar a Wikipédia expandindo-o.