Geometria

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Uma ilustração do Teorema de Desargues, um resultado importante na geometria euclidiana e projetiva.
Oxyrhynchus papyrus (P.Oxy. I 29) mostrando um fragmento dos Elementos de Euclides.

A Geometria (em grego antigo: γεωμετρία; geo- "terra", -metria "medida") é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras e com as propriedades do espaço. Um matemático que trabalha no campo da geometria é denominado de geômetra. A geometria surgiu independentemente em várias culturas antigas como um conjunto de conhecimentos práticos sobre comprimento, área e volume, sendo que o aparecimento de elementos de uma ciência matemática formal é no mínimo tão antigo quanto Tales (século VI a.C.). Por volta do século III a.C., a geometria foi posta em uma forma axiomática por Euclides, cujo tratamento, chamado de geometria euclidiana, estabeleceu um padrão que perdurou por séculos.[1] Arquimedes desenvolveu técnicas engenhosas para calcular áreas e volumes, antecipando em várias maneiras o moderno cálculo integral. O campo da astronomia, especialmente o mapeamento das estrelas e planetas na esfera celestial e a descrição das relações entre os movimentos dos corpos celestiais, foi uma das mais importantes fontes de problemas geométricos durante os mil e quinhentos anos seguintes. Tanto a geometria quanto a astronomia foram consideradas no mundo clássico parte do Quadrivium, um subgrupo das sete artes liberais cujo domínio era considerado essencial para o cidadão livre.

Como mostrado por Arquimedes, uma esfera tem 2/3 do volume de seu cilindro circunscrito.
A geometria esférica é um exemplo de geometria não-euclidiana. Ela tem aplicações práticas em navegação e astronomia.

A partir da experiência, ou, eventualmente, intuitivamente, as pessoas caracterizam o espaço por certas qualidades fundamentais, que são denominadas axiomas de geometria (como, por exemplo, os axiomas de Hilbert). Esses axiomas não são provados, mas podem ser usados em conjunto com os conceitos matemáticos de ponto, linha reta, linha curva, superfície e sólido para chegar a conclusões lógicas, chamadas de teoremas.

A influência da geometria sobre as ciências físicas foi enorme. Como exemplo, quando o astrônomo Kepler mostrou que as relações entre as velocidades máximas e mínimas dos planetas, propriedades intrínsecas das órbitas, estavam em razões que eram harmônicas — relações musicais —, ele afirmou que essa era uma música que só podia ser percebida com os ouvidos da alma — a mente do geômetra.

Com a introdução do plano cartesiano, muitos problemas de outras áreas da matemática, como álgebra, puderam ser transformados em problemas de geometria (e vice-versa), muitas vezes conduzindo à simplificação das soluções. (ver geometria analítica)

Origens da geometria[editar | editar código-fonte]

Egito[editar | editar código-fonte]

Ilustração do ensino da Geometria, dos Elementos de Euclides.

A matemática surgiu de necessidades básicas, em especial da necessidade econômica de contabilizar diversos tipos de objetos. De forma semelhante, a origem da geometria (do grego geo =terra + metria= medida, ou seja, "medir terra") está intimamente ligada à necessidade de melhorar o sistema de arrecadação de impostos de áreas rurais, e foram os antigos egípcios que deram os primeiros passos para o desenvolvimento da disciplina.

Todos os anos o rio Nilo extravasava as margens e inundava o seu delta. A boa notícia era a de que as cheias depositavam nos campos de cultivo lamas aluviais ricas em nutrientes, tornando o delta do Nilo a mais fértil terra lavrável do mundo antigo. A má notícia consistia em que o rio destruía as marcas físicas de delimitação entre as possessões de terra, gerando conflitos entre indivíduos e comunidades sobre o uso dessa terra não delimitada.

A dimensão desses conflitos pode ser apreciada na repercussão que se encontra no Livro dos Mortos do Egito, onde uma pessoa acabada de falecer tem de jurar aos deuses que não enganou o vizinho, roubando-lhe terra. Era um pecado punível com ter o coração comido por uma besta horrível chamada o «devorador». Roubar a terra do vizinho era considerado uma ofensa tão grave como quebrar um juramento ou assassinar alguém. Sem marcos fronteiriços, os agricultores e administradores de templos, palácios e demais unidades produtivas fundadas na agricultura não tinham referência clara do limite das suas possessões para poderem cultivá-la e pagarem os impostos devidos na medida da sua extensão aos governantes.

Os antigos faraós resolveram passar a nomear funcionários, os agrimensores, cuja tarefa era avaliar os prejuízos das cheias e restabelecer as fronteiras entre as diversas posses. Foi assim que nasceu a geometria. Estes agrimensores, ou esticadores de corda (assim chamados devido aos instrumentos de medida e cordas entrelaçadas concebidas para marcar ângulos retos), acabaram por aprender a determinar as áreas de lotes de terreno dividindo-os em retângulos e triângulos.

Acredita-se em geral que a origem da geometria se situa no Egito, o que é natural, pois, para a construção das pirâmides e outros monumentos desta civilização, seriam necessários conhecimentos geométricos. Estudos mais recentes contrariam esta opinião e referem que os egípcios foram buscar aos babilónios muito do seu saber.

Dois problemas clássicos da geometria[2] [editar | editar código-fonte]

Ao longo da história, a Geometria glorifica dois problemas que se tornaram clássicos: quadratura do círculo e duplicação do cubo.

O primeiro problema: A quadratura do círculo[editar | editar código-fonte]

O Problema da Quadratura do Circulo.

O problema da quadratura do círculo foi proposto por Anaxágoras (499-428 a.C.): dado um círculo, construir um quadrado de mesma área. Como os gregos desconheciam as operações algébricas e priorizavam a Geometria, propunham solução apenas com régua (sem escala) e compasso.

Os gregos desenvolviam a Matemática, não com escopo prático, utilitarista, mas movidos pelo desafio intelectual, pelo “sabor do saber” e pelo prazer intrínseco, já que a Matemática enseja o apanágio da lógica, da têmpera racional da mente e da coerência do pensamento.

O segundo problema: a duplicação do cubo[editar | editar código-fonte]

Representação Gráfica do Problema da Duplicação do Cubo.

Conta uma lenda que, em 429 a.C., durante o cerco espartano na Guerra do Peloponeso, uma peste dizimou um quarto da população de Atenas, matando inclusive Péricles, e que uma plêiade de sábios fora enviada ao oráculo de Apolo, em Delfos, para inquirir como a peste poderia ser eliminada.

O oráculo respondeu que o altar cúbico de Apolo deveria ser duplicado. Os atenienses celeremente dobraram as medidas das arestas. A peste, em vez de se amainar, recrudesceu. Qual o erro? Em vez de dobrar, os atenienses octuplicaram o volume do altar. A complexidade do problema deve-se ao fato de que os gregos procuravam uma solução geométrica, usando régua (sem escala) e compasso.

Infere-se que os dois problemas clássicos da Geometria — a quadratura do círculo e a duplicação do cubo — têm solução trivial por meio da Álgebra.

E a solução geométrica? Em 1837, Pierre L. Wantzel, um jovem professor e matemático francês de apenas 23 anos, demonstra que os dois problemas em tela não podem ser resolvidos utilizando-se apenas régua e compasso.

É importante mencionar que os gregos, além de não conhecerem a Álgebra, desenvolviam a Matemática como um desafio intelectual ou pelo sublime prazer de pensar.

Topologia e geometria[editar | editar código-fonte]

O campo da topologia, em que houve enorme desenvolvimento no século XX, é em sentido técnico um tipo de geometria transformacional, em que as transformações que preservam as propriedades das figuras são os homeomorfismos (por exemplo, isto difere da geometria métrica, em que as transformações que não alteram as propriedades das figuras são as isometrias). Isto tem sido frequentemente expresso sob a forma do dito "a topologia é a geometria da folha de borracha".[3] [4] [5]

Ver também[editar | editar código-fonte]

Wikcionário
O Wikcionário possui o verbete geometria.

Notas e referências