Geometria diferencial

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

Geometria diferencial é o estudo da geometria usando o cálculo. Esses campos são adjacentes, e têm muitas aplicações em física, notavelmente na teoria da relatividade, e também em cartografia.

História[editar | editar código-fonte]

A geometria diferencial, originada da junção do cálculo com a geometria, nasceu, de certo modo, como uma ciência aplicada, principalmente em questões originadas da cartografia, de onde herdou parte de sua terminologia inicial. Posteriormente passou a ser de grande utilidade na astronomia e na engenharia. Embora o cálculo fosse suficiente para o entendimento e a aplicação das leis de Newton, não o foi para a teoria da relatividade que nasceu sobre os alicerces do conhecimento estabelecido pela geometria diferencial. A interação entre a geometria diferencial e a análise tem sido fator de desenvolvimento de ambas as disciplinas. No espírito da geometria analítica de Descartes, questões profundas de análise têm sido resolvidas através da geometria e vice-versa. Todo um capítulo, extremamente atual e de grande potencial para aplicações, das equações diferenciais parciais não-lineares, foi desenvolvido sob a inspiração de questões geométricas. A computação gráfica esta começando a demonstrar que a geometria diferencial estará proximamente presente e acessível para um público bem mais amplo, quer na área científica, quer na área empresarial, fornecendo a interface gráfica adequada à apresentação de resultados, ao desenvolvimento de novas tecnologias e ao planejamento de novos produtos.

Intrínseco versus extrínseco[editar | editar código-fonte]

Inicialmente e até a metade do século XIX, a geometria diferencial era vista de uma maneria extrínseca: curvas, superfícies eram consideradas dentro de um espaço euclidiano de dimensão maior (um plano em um espaço tridimensional, por exemplo). Começando com o trabalho de Riemann, a maneira intrínseca de se tratar a geometria foi desenvolvida, na qual não se pode sair do objeto geométrico.

A forma intrínseca é mais flexível, por exemplo na relatividade onde o espaço-tempo não podem ser naturalmente tratados extrinsecamente. É mais difícil de se definir curvatura do ponto de vista intrínseco, e outras estruturas como conexão, então há um preço a ser pago.

Essas duas maneiras diferentes de tratamento podem ser conciliadas, por exemplo a geometria extrínseca pode ser considerada como uma estrutura adicional à intrínseca.


Ícone de esboço Este artigo sobre geometria é um esboço. Você pode ajudar a Wikipédia expandindo-o.