Último teorema de Fermat

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Este artigo ou se(c)ção cita uma ou mais fontes fiáveis e independentes, mas ela(s) não cobre(m) todo o texto (desde setembro de 2012).
Por favor, melhore este artigo providenciando mais fontes fiáveis e independentes e inserindo-as em notas de rodapé ou no corpo do texto, conforme o livro de estilo.
Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.
Pierre de Fermat - Século XVII

O Último teorema de Fermat, ou teorema de Fermat-Wiles, afirma que não existe nenhum conjunto de inteiros positivos x, y, z e n com n maior que 2 que satisfaça.[1]

x^n+y^n=z^n \,\! .

O teorema deve seu nome a Pierre de Fermat, que escreveu às margens de uma tradução de Arithmetica de Diofanto, ao lado do enunciado deste problema:

"Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet."
"Encontrei uma demonstração verdadeiramente maravilhosa disto, mas esta margem é estreita demais para contê-la."

Após ter sido objeto de fervorosas pesquisas durante mais de 300 anos (a nota acima insinuava que uma demonstração elementar era possível — o que atiçou a curiosidade de todos), ele foi finalmente demonstrado em 1994 pelo matemático britânico Andrew Wiles. A grande maioria dos matemáticos acredita hoje que Fermat estava enganado: a prova utiliza ferramentas matemáticas bastante elaboradas da Teoria dos números — abrangendo curvas elípticas, formas modulares e representações galoisianas (termo derivado de Évariste Galois, matemático francês) — as quais ainda não existiam na época em que viveu Fermat.

Mais precisamente, Wiles provou um caso particular (para curvas ditas semi-estáveis) da Conjectura de Shimura-Taniyama-Weil, pois sabia-se já havia algum tempo que este caso implicava o teorema.

Ainda não é conhecida nenhuma aplicação deste teorema. Ele toma um valor importante, no entanto, devido às ideias e às ferramentas matemáticas que foram inventadas e desenvolvidas para prová-lo. Pode-se entender este teorema graficamente considerando-se a curva da equação x^n+y^n=1 quando n>2, essa curva não passa por nenhum ponto com coordenadas racionais diferentes de zero.

Extensão do Teorema de Pitágoras?[editar | editar código-fonte]

Para os primeiros dois valores de n inteiro existe uma infinidade de soluções: o caso n = 1 é evidente, o caso n = 2 — conhecido como teorema de Pitágoras — admite, entre outras, a solução clássica 4^2+3^2=5^2 que utiliza o método do círculo. Outras soluções podem ser encontradas usando-se o esquema:

\left({a^2-b^2}\right)^2+\left({2ab}\right)^2=\left({a^2+b^2}\right)^2 \,\! ,

para todos a, b inteiros primos entre si, sendo que outras soluções são encontradas multiplicando-se a e b por um número inteiro. Os números que satisfazem o Teorema de Pitágoras são chamados de trios pitagóricos (ou ternos pitagóricos).

O Último Teorema de Fermat e a Literatura[editar | editar código-fonte]

Propiciando notáveis avanços em vários ramos da matemática, a saga de 359 anos de tentativas, erros e acertos está admiravelmente descrita no livro “O Último Teorema de Fermat”,[2] do autor britânico Simon Lehna Singh, com 324 páginas.

Referências

  1. [1]
  2. SINGH, Simon (1998). O Último Teorema de Fermat. Rio de Janeiro: Editora Record.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.