Problema matemático

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Este artigo ou se(c)ção cita uma ou mais fontes fiáveis e independentes, mas ela(s) não cobre(m) todo o texto.
Por favor, melhore este artigo providenciando mais fontes fiáveis e independentes e inserindo-as em notas de rodapé ou no corpo do texto, conforme o livro de estilo.
Encontre fontes: Googlenotícias, livros, acadêmicoYahoo!Bing. Veja como referenciar e citar as fontes.

Um problema de matemática é uma questão que pode ser enunciada em linguagem matemática e/ou analisada por métodos matemáticos. Um problema matemático pode ter uma solução, diversas soluções, ou mesmo nenhuma solução. Muitos problemas estão em aberto, ou seja, sem solução conhecida.

É costumeiro fazer distinção em matemática, entre problemas e exercícios: o exercício não requer invenção ou criação, apenas aplicação de conhecimentos já obtidos.[1] Já para resolver um problema é necessária criatividade, sendo também usadas técnicas aprendidas, ou mesmo processos inatos, de heurística.[2]

Um problema cuja solução foi procurada por séculos até quando se demonstrou sua impossibilidade é a quadratura do círculo.

Problemas famosos[editar | editar código-fonte]

Ao longo dos tempos, muitos problemas matemáticos tornaram-se célebres. Dentre os quais pode-se citar:

  • Quadratura do círculo: Utilizando apenas régua e compasso, desenhar um quadrado cuja área seja a mesma de um círculo dado.
  • Duplicação do cubo: Utilizando apenas régua e compasso, desenhar a aresta de um cubo cujo volume seja o dobro de um cubo dado.
  • Problema de Pappus: Dadas quatro retas e quatro ângulos correspondentes, encontre o lugar geométrico de um ponto tal que as distâncias oblíquas do ponto às retas obedeça à relação: d1d2 : d3d4 = constante.[3] [4]
  • Problema de Alhazen: Dados uma fonte puntual de luz e um espelho esférico, determine onde fica o ponto no espelho onde um raio de luz é refletido para o olho do observador.[5]
  • Problema da tautócrona: Encontre a curva tal que uma bolinha largada numa pista naquele formato a percorre acelerada pela gravidade num tempo que independe da posição inicial.[6] [7]
  • Problema da braquistócrona: Encontre a curva tal que uma bolinha largada numa pista naquele formato a percorre acelerada pela gravidade no menor tempo possível.[6] [8]
  • Problema de Monty Hall: Suponha que você está em um game show, e é dada a você a opção de escolha entre três portas: Atrás de uma porta há um carro; atrás das outras, cabras. Você escolhe uma porta, diga-se a Nº 1, e o apresentador, que sabe o que há atrás das portas, abre outra porta, diga-se a Nº 3, em que há uma cabra. Ele então lhe pergunta, "Você quer escolher a porta Nº 2?" É vantajoso mudar sua escolha?

No livro 100 Great Problems of Elementary Mathematics: Their History and Solution, de Heinrich Dorrie, são apresentados cem problemas marcantes na história da matemática e as soluções encontradas por vários dos mais célebres matemáticos (incluindo soluções de Arquimedes, Isaac Newton, Leonhard Euler, Pierre de Fermat, Carl Gauss e muitos outros).[9] [10]


Resolução de problemas vs. desenvolvimento de teorias[editar | editar código-fonte]

Um artigo de Timothy Gowers, intitulado The Two Cultures of Mathematics (em analogia ao The Two Cultures, de C. P. Snow) tornou-se célebre por fazer uma distinção do que o autor viu como "duas culturas" em pesquisas de matemática: a dos resolvedores de problemas e a dos desenvolvedores de teorias.[11]

Resolução de problemas na educação matemática[editar | editar código-fonte]

A resolução de problemas matemáticos é tema central de muitas discussões acerca de métodos de ensino.[12]

No Brasil[editar | editar código-fonte]

A metodologia de ensino de matemática através de atividades de resolução de problemas é pouco usada no Brasil.[13] No Brasil, a metodologia de ensino com base na resolução de problemas é defendida por Jacob Palis:

Cquote1.svg A experiência das melhores escolas, no Brasil e no exterior, mostra que uma boa aula pressupõe desafiar os estudantes o tempo todo, de modo que eles sejam expostos a problemas cada vez mais complexos e estimulantes intelectualmente — o avesso da decoreba. Apenas num ambiente assim se abre o espaço necessário para a inventividade. (...) Cquote2.svg
Jacob Palis[14]

Nos Estados Unidos[editar | editar código-fonte]

Em cursos universitários de matemática, Robert Lee Moore utilizava um método de ensino que ficou conhecido como o método de Moore, em que os próprios estudantes tinham que demonstrar os teoremas apresentados em aula pelo professor.[15]

Na Rússia[editar | editar código-fonte]

Na Rússia, o papel da resolução de problemas na educação tem tradicionalmente recebido grande importância,[16] [17] e é enfatizado nos cursos de preparação de professores.[18]

Referências

  1. http://www.mat.ufrgs.br/~portosil/resu1.html
  2. http://www.aapt.org/Conferences/newfaculty/upload/Coop-Problem-Solving-Guide.pdf
  3. http://books.google.com.br/books?id=U4I82SJKqAIC&pg=PA54
  4. http://stephenhuggett.com/Newton.pdf
  5. http://mathworld.wolfram.com/AlhazensBilliardProblem.html
  6. a b http://www.ifi.unicamp.br/~lunazzi/F530_F590_F690_F809_F895/F809/F809_sem1_2008/WellingtonL-Firer_RF2.pdf
  7. http://mathworld.wolfram.com/TautochroneProblem.html
  8. http://mathworld.wolfram.com/BrachistochroneProblem.html
  9. http://www.cut-the-knot.org/books/dorrie/back.shtml
  10. http://books.google.com.br/books/about/100_Great_Problems_of_Elementary_Mathema.html?id=i4SJwNrYuAUC&redir_esc=y
  11. GOWERS, W. T. The Two Cultures of Mathematics.
  12. LAMONATO, M.; PASSOS, C. L. B. Discutindo resolução de problemas e exploração-investigação matemática: reflexões para o ensino da matemática. Revista Zetetiké, Campinas, vol. 19, nº. 36, julho. / dezembro., 2011.
  13. ZUFFI, E. M.; ONUCHIC, L. R. O Ensino-Aprendizagem de Matemática através da Resolução de Problemas e os Processos Cognitivos Superiores. Revista Unión, nº. 11, setembro., 2007.
  14. Entrevista de Jacob Palis à revista VEJA (jornalistas Monica Weinberg e Roberta de Abreu Lima).
  15. Revista Matemática Universitária. Uma breve conversa com John Milnor. Revista Matemática Universitária, nº. 9/10, dezembro., 1989.
  16. SAFUANOV, Ildar. Development of problem solving and fostering of creativity in USSR and Russia.
  17. TOOM, A. A Russian Teacher in America. Journal of Mathematical Behavior 12, 117-139 (1993).
  18. VOGELI, B. R. Russian Mathematics Education: History and World Significance, p. 304.

Ver também[editar | editar código-fonte]