Triângulo de Sierpinski

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita nenhuma fonte ou referência, o que compromete sua credibilidade (desde junho de 2014).
Por favor, melhore este artigo providenciando fontes fiáveis e independentes, inserindo-as no corpo do texto por meio de notas de rodapé. Encontre fontes: Googlenotícias, livros, acadêmicoYahoo!Bing. Veja como referenciar e citar as fontes.
Triângulo de Sierpinski

O Triângulo de Sierpinski é uma figura geométrica obtida através de um processo recursivo. Ele é uma das formas elementares da geometria fractal por apresentar algumas propriedades, tais como: ter tantos pontos como o do conjunto dos números reais; ter área igual a zero; ser auto-semelhante (uma sua parte é idêntica ao todo); não perder a sua definição inicial à medida que é ampliado. Foi primeiramente descrito por Waclaw Sierpinski (1882 - 1969), matemático polonês.

Construção[editar | editar código-fonte]

Uma das maneiras de se obter um triângulo de Sierpinski é através do seguinte algoritmo:

  1. Comece com qualquer triângulo em um plano. O triângulo de Sierpinski canônico utilizava um triângulo equilátero com a base paralela ao eixo horizontal, mas qualquer triângulo pode ser usado (ver primeira figura).
  2. Encolha o triângulo pela metade (cada lado deve ter metade do tamanho original), faça três copias, e posicione cada triângulo de maneira que encoste nos outros dois em um canto (ver segunda figura).
  3. Repita o passo 2 para cada figura obtida, indefinidamente (ver a partir da terceira figura).
The evolution of the Sierpinski triangle

Embora no processo acima a figura inicial seja um triângulo, não é necessário partir de um para se chegar no triângulo de Sierpinski. É possível utilizar qualquer figura geométrica (ver abaixo), o triângulo só é utilizado por facilitar a visualização.

Iterating from a square

O fractal propriamente dito só é obtido quando o processo do algoritmo é repetido infinitas vezes, mas conforme o número de iterações aumenta, a imagem obtida tende a se tornar cada vez mais parecida com o fractal.

Propriedades[editar | editar código-fonte]

O triângulo de Sierpinski possui uma dimensão de Hausdorff de log(3)/log(2) (aproximadamente 1,585). Isso acontece porque essa é uma figura formada por três cópias de si mesma, cada uma reduzida por um fator de 1/2.

Também existe uma relação com o triângulo de Pascal. Montando o triângulo de Pascal com 2n linhas, e pintando os números pares de branco e os ímpares de preto, a figura obtida será uma aproximação do triângulo de Sierpinski.

A área de um triângulo de Sierpinski é zero. Isso pode ser percebido quando observamos que, a cada iteração, a área da figura obtida foi reduzida em 25% em relação a área da figura original.

Ver também[editar | editar código-fonte]