Ampola de raios X

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegação Saltar para a pesquisa
Tubo de Coolidge

Uma ampola de raios X chamada também de tubo de Coolidge[1][2], é uma válvula termiônica, cuja função é a produção de um feixe de raios X.

Diagrama de uma ampola de raios X (tubo de Coolidge) com anodo fixo.

A ampola, que pode ser de vidro (Pyrex) ou metal, tem seu interior mantido em vácuo e possui dois eletrodos: um catodo e um anodo. No catodo há um filamento que quando atravessado por uma corrente elétrica gera calor. Uma vez aquecido, o filamento emite elétrons pelo efeito termoiônico. Estes elétrons são acelerados em direção ao anodo em função de uma diferença de potencial existente entre estes eletrodos. Quando os elétrons atingem o anodo, sofrem uma desaceleração brusca e sua energia cinética é, em sua maior parte, convertida em calor e também em raios X por meio do fenômeno do bremsstrahlung (do alemão: radiação de freamento).[1][3][4]

Catodo[editar | editar código-fonte]

O catodo é o eletrodo negativo e sua função é fornecer os elétrons que serão acelerados em direção ao anodo pelo campo elétrico existente entre os dois eletrodos.

O catodo possui um ou dois filamentos feitos de uma liga de tungstênio e tório. Quando uma corrente elétrica atravessa o filamento é gerado calor pelo efeito Joule, o filamento atinge temperaturas da ordem de 2000 °C (a temperatura de fusão do tungstênio é de 3410 °C). Nesta temperatura, por meio do efeito termoiônico, o filamento emite elétrons. A presença de 1 a 2% de tório no tungstênio aumenta a eficiência da emissão e prolonga a vida do catodo.[1][5][2]

Os elétrons são emitidos a partir do filamento em todas as direções, além disso, como todos possuem a mesma carga negativa, ocorre uma repulsão entre eles o que leva a uma desfocalização do feixe ao chegar no anodo. Para evitar esse problema, um eletrodo de focalização (ou capa focalizadora) carregado negativamente e localizado ao redor do filamento é usado para confinar eletrostaticamente os elétrons.[1][5][2]

Anodo[editar | editar código-fonte]

Em uma ampola de raios X, o eletrodo positivo é o anodo e é onde o feixe de elétrons colide e produz os raios X.

O principal problema no seu projeto deve-se a ineficiência na produção dos raios X, uma vez que mais de 99% da energia cinética dos elétrons que atingem o anodo é transformada em calor.[1][5]

Ampola de raios X com anodo giratório.

Existem dois tipos de anodos:

  • anodo fixo: são usados em equipamentos odontológicos e equipamentos portáteis que não necessitam de correntes elevadas.[1] Nestes o anodo é feito com um material com boa capacidade térmica como o cobre. O ponto do anodo no qual o feixe de elétrons incide é chamado de alvo e é feito com uma liga de tungstênio ou molibdênio impregnado no cobre. Estes materiais possuem alto ponto de fusão e o tungstênio, em particular, possui elevado número atômico o que aumenta a eficiência na produção dos raios X.[1][5][6]. Estes anodos podem ser refrigerados com água, no caso de aparelhos usados em cristalografia ou ainda com óleo no caso de aparelhos para radiografia.[5]
  • anodo giratório: o anodo tem o formato de um disco e possui um eixo ligado a um motor. Durante seu funcionamento o disco gira continuamente e o feixe de elétrons incide em sua borda, dessa forma a área na qual o calor é gerado é muito maior que no caso do anodo fixo, melhorando a dissipação térmica.[1][5] Quanto maior a rotação, melhor a dissipação térmica. Na maioria dos tubos de raios X a rotação é de 3600 rpm (rotações por minuto), enquanto em tubos alta capacidade podem chegar a 10000 rpm.[1]

Produção dos raios X[editar | editar código-fonte]

Ao atingirem o anodo, a maioria dos elétrons perdem sua energia cinética nas inúmeras colisões com os átomos do anodo, convertendo-a em calor. Alguns elétrons participam na produção de raios X por dois processos fundamentais: a emissão de raios X de freamento e a emissão de raios X característicos (ou de fluorescência).[6]

Os raios X característicos produzem um espectro de linhas ou raias com energias bem definidas características do material do alvo.[6]

Já os raios X de freamento ocorrem quando os elétrons aproximam-se dos núcleos dos átomos que compõem o alvo e sofrem uma desaceleração brusca devido ao campo coulombiano do núcleo. Estes raios X são chamados de bremsstrahlung (do alemão: radiação de freamento) e produzem um espectro contínuo de energia, variando de valores próximos de zero até um valor máximo que corresponde a toda a energia cinética do elétron.[6]

Referências

  1. a b c d e f g h i Stewart Carlyle Bushong (2010). «Cap. 7 - O tubo de raios X». Ciência radiológica para tecnólogos. Física, biologia e proteção 9ª ed. [S.l.]: Elsevier. p. 123. ISBN 978-8535237320 
  2. a b c George L. Clark (1955). «Cap.2 - X-rays tubes». Applied X-rays (em inglês) 2ª ed. Nova York: McGraw-Hill 
  3. Luiz Alberto M. Scaff (1979). «Cap. 2 - Produção de raios X». Bases Físicas da Radiologia. Diagnóstico e terapia. São Paulo: Sarvier. p. 22-23 
  4. Júlio César de A. C. R. Soares (2008). «Cap. 3 - Formação de imagens em radiologia». Princípios de física em radiodiagnóstico (pdf) 2ª ed. São Paulo: Colégio Brasileiro de Radiologia. p. 41-42. ISBN 978-85-87950-10-9. Consultado em 17 de dezembro de 2019 
  5. a b c d e f J.G. Brown (1966). «Cap. 2 - Generation of X-rays». X-rays and their applications (em inglês). [S.l.]: New York Plenum Press. ISBN 978-1-4613-4398-1 
  6. a b c d Okuno, Emico; Yoshimura, Elisabeth (2010). «Capítulo 2 - Raios X». Física das radiações. São Paulo: Oficina de textos. p. 35 e 254. ISBN 978-85-7975-005-2