Integral de Riemann: diferenças entre revisões

Origem: Wikipédia, a enciclopédia livre.
Conteúdo apagado Conteúdo adicionado
MerlIwBot (discussão | contribs)
m Robô: A modificar: it:Integrale di Riemann
Kieff (discussão | contribs)
Linha 12: Linha 12:
Note que onde <math>f</math> pode ser positivo e negativo, a integral corresponde à "área com sinal"; isto é, a área acima do eixo <math>x</math> é positiva e a área abaixo do eixo <math>x</math> negativa.
Note que onde <math>f</math> pode ser positivo e negativo, a integral corresponde à "área com sinal"; isto é, a área acima do eixo <math>x</math> é positiva e a área abaixo do eixo <math>x</math> negativa.


[[Imagem:Riemann.gif|thumb|right|Uma soma de Riemann. Os números no canto superior direito são as áreas dos retângulos cinza. Eles convergem para a integral da função]]
[[Imagem:Riemann integral irregular.gif|thumb|right|Uma soma de Riemann. O número na parte superior representa a soma das áreas dos retângulos azuis. O valor converge para o integral da função.]]


== Definição da integral de Riemann ==
== Definição da integral de Riemann ==

Revisão das 21h47min de 26 de maio de 2012

No ramo da matemática conhecido como análise real, a integral de Riemann, criada por Bernhard Riemann, foi a primeira definição rigorosa de uma integral de uma função em um intervalo. Enquanto a integral de Riemann é inadequada para muitos propósitos teóricos, ela é uma das definições mais fáceis de integral. Algumas deficiências destas técnicas podem ser remediadas pela integral de Riemann-Stieltjes, e a maioria delas desaparece na integral Lebesgue.

Visão geral

Figura 2

Seja uma função não negativa válida para os números reais do intervalo , e seja uma região plana sob a função e acima do intervalo (veja a figura 2). O nosso interesse é medir a área de . Uma vez realizada esta medição, iremos denotá-la por:

A ideia básica de integral de Riemann é muito simples de usar e não deixa ambiguidade para a área de . Para se ter uma aproximação cada vez melhor, nós podemos dizer que "no limite" iremos obter exatamente a área de sob a curva.

Note que onde pode ser positivo e negativo, a integral corresponde à "área com sinal"; isto é, a área acima do eixo é positiva e a área abaixo do eixo negativa.

Uma soma de Riemann. O número na parte superior representa a soma das áreas dos retângulos azuis. O valor converge para o integral da função.

Definição da integral de Riemann

Partições de um intervalo

Uma partição de um intervalo é uma sequência finita . Cada é denominado como um sub-intervalo da partição. A malha de uma partição é definida como o comprimento do mais longo sub-intervalo , isto é, aquele em que onde . Isto também é conhecido como norma de partição.

Uma partição de um intervalo etiquetado é uma partição de um intervalo juntamente com uma sequência finita de números sujeito a condição que para cada , . Em outras palavras, isto é uma partição juntamente com um ponto distinto para cada sub intervalo. A malha de uma etiqueta é definida da mesma forma que para uma partição ordinária.

Suponha que juntamente com são uma partição etiquetada de , e que juntamente com seja uma outra partição etiquetada de . Nos poderemos dizer que e juntas são um refinamento da juntamente com se para cada inteiro com , exista um inteiro tal que e tal que para algum com . Falando de uma maneira mais simples, um refinamento de uma partição de etiqueta pega uma partição inicial e adiciona mais etiquetas, mas isto não chega a lugar algum.

Nos podemos definir uma ordem parcial um subconjunto de todas as etiquetas de partição significando que uma etiqueta de partição é maior do que outra se a maior é um refinamento da menor.

Soma de Riemann

Escolha uma função válida para números reais a qual se encontra definida no intervalo . A Soma de Riemann de com respeito a partição denominada com é:

Cada termo na soma é o produto do valor da função em um ponto dado e o comprimento do intervalo. Consequentemente, cada termo representa área de um retângulo com a altura e o comprimento . A soma de Riemann é a área sinalizada de todos os retângulos.

A integral de Riemann

Grosseiramente falando, a integral de Riemann é o limite da soma de Riemann com uma função de partição que se afine cada vez mais. Contudo, o significado preciso a cerca do que significa "cada vez mais fino" é o mais importante.

Um fato importante é que a malha de partição deve ser tornar menor e menor, até que seu limite atinja zero. Se isto não for assim, então não poderemos ter uma boa aproximação para esta função em certos intervalos. De fato, isto é suficientemente bom para definir uma integral. Para ser especifico, nos dizemos que a integral Riemann de se igualara a se as seguintes condições foram consideradas:

Para todo , onde exista tal que para qualquer partição etiquetada e onde a malha seja menor que , nos temos:

Contudo, existe um problema desagradável com esta definição: ela é muito difícil para se trabalhar. Então faremos uma definição alternativa para a integral de Riemann a qual seja mais fácil para se trabalhar, então se prova que esta é a mesma definição que a original. Nossa nova definição diz que a integral de Riemann de é igual a se as seguintes condições foram consideradas:

Para todo , existe uma partição etiquetada e tal que para qualquer refinamento e de e , nos teremos

Ambos eventualmente significam, a soma de Riemann de com respeito para qualquer partição que seja selecionada que leve a se aproximar de . Desde que isto seja verdade, não importa a proximidade que necessitamos que esta soma ira assumir, nos diremos que a soma Riemann convergira para . Esta definição é sempre um caso especial de um conceito mais geral, uma rede.

Como nos estabelecemos antes, estas duas definições são equivalentes. Em outras palavras, funciona na sua primeira definição se e somente se funciona na sua segunda definição. Para mostrar que a primeira definição implica a segunda, iniciamos com um , e escolhemos um que satisfaça a condição. Escolha qualquer partição etiquetada onde a malha é menor que . Esta soma Riemann é em dentro de , e qualquer refinamento desta partição ira também ter uma grade menor que , então a soma de Riemann dos refinamentos ira também estar em de . Para mostrar que a segunda definição implica a primeira, isto é facilitado com uso da integral de Darboux. Primeiro mostraremos que a segunda é equivalente a definição da integral de Darboux, para isto veja a integral. Agora nos iremos mostras que a função de integração de Darboux satisfaz a primeira definição. Escolha a partição tal que o limite inferior e superior da soma de Darboux com respeito a esta partição esteja em dentro do valor da integral de Darboux. Seja igual , onde e são o supremum e infimum, respectivamente, de em , e sendo menor que e . Então não é difícil de mostrar que a soma de Riemann de com respeito de qualquer partição etiquetada da grade menor que ira estar em dentro de da maior ou menor soma de Darboux, então isto estará em dentro de de .

Referências


  • * Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.

Ver também