Primitiva

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde junho de 2016). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)

Em matemática, se é um conjunto de números reais e é uma função de em , diz-se que uma função de em é uma primitiva ou antiderivada de se a derivada de for igual a . Se f tiver uma primitiva, diz-se que é primitivável. Pode-se provar que, se for um intervalo com mais do que um ponto:

  • quaisquer duas primitivas diferem por uma constante, ou seja, se F1 e F2 forem primitivas de , então F1 − F2 é constante;
  • se for contínua então f é primitivável, o que resulta do teorema fundamental do cálculo.

Quando se primitiva uma função num intervalo (aberto, fechado ou semiaberto) obtém-se uma família de primitivas na forma:

Exemplo no cálculo de uma primitiva[editar | editar código-fonte]

Tentemos achar a seguinte primitiva:

Usaremos os métodos da primitivação por substituição e da primitivação por partes.

Façamos a seguinte substituição:

Temos então que:

Substituindo ficamos então com:

Aplicamos agora a primitivação por partes



fazendo agora a substituição inicial temos o resultado final:

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Wiki letter w.svgEste artigo sobre matemática é mínimo. Você pode ajudar a Wikipédia expandindo-o.