Espaço amostral

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita nenhuma fonte ou referência, o que compromete sua credibilidade (desde setembro de 2011).
Por favor, melhore este artigo providenciando fontes fiáveis e independentes, inserindo-as no corpo do texto por meio de notas de rodapé. Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.

Em teoria das probabilidades, o espaço amostral ou espaço amostral universal, geralmente denotado S, E, Ω ou U (de "universo"), de um experimento aleatório é o conjunto de todos os resultados possíveis do experimento. Por exemplo, se o experimento é lançar uma moeda e verificar a face voltada para cima, o espaço amostral é o conjunto \{cara, coroa\}. Para o lançamento de um dado de seis faces, o espaço amostral é \{1, 2, 3, 4, 5, 6\}. Qualquer subconjunto de um espaço amostral é comumente chamado um evento, enquanto subconjuntos de um espaço amostral contendo apenas um único elemento são chamados de eventos elementares ou eventos atômicos.

Para alguns tipos de experimentos, podem existir dois ou mais espaços amostrais possíveis plausíveis. Por exemplo, quando retirado uma carta de um baralho de 52 cartas, uma possibilidade poderia ser o valor dela (Ás até o Rei), enquanto outra poderia ser o naipe (copa, ouro, espada ou paus). Uma descrição completa dos resultados, entretanto, iria especificar ambas denominação e naipe, e um espaço amostral descrevendo cada carta individualmente pode ser construído através do produto cartesiano dos dois espaços amostrais citados.

Espaços amostrais aparecem naturalmente em uma introdução elementar a probabilidade, mas são também importante em espaços de probabilidade. Um espaço de probabilidade (Ω, F, P) incorpora um espaço amostral de resultados, Ω, mas define um conjunto de eventos de interesse, a σ-algebra F, para o qual a medida de probabilidade P é definida.

Cardinalidade[editar | editar código-fonte]

A cardinalidade do espaço amostral é o número total de elementos no conjunto. O espaço amostral pode ter cardinalidade finita ou infinita. Por exemplo, no caso do lançamento de um dado de seis faces, a cardinalidade do espaço amostral é 6. No caso da escolha de um entre todos números reais, a cardinalidade é infinita.

A cardinalidade de um conjunto A pode ser representada por \#A.

Ver também[editar | editar código-fonte]