Representações de e

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa

  Parte de uma série de artigos sobre
a constante matemática e

Euler's formula.svg

Logaritmo natural · Função exponencial

Aplicações em: interesse composto · identidade de Euler & fórmula de Euler  · meia-vida & crescimento/decaimento exponencial

Definindo e: Prova de irracionalidade do número de Euler  · representações de e · teorema de Lindemann–Weierstrass

Pessoas John Napier  · Leonhard Euler

conjectura de Schanuel

A constante matemática e pode ser representada de diversas formas como um número real. Por e ser um número irracional, o mesmo não pode ser representado como uma fração, podendo porém ser representado como uma fração contínua. Usando o cálculo, e pode ser representado como série infinita, produto infinito ou limite de uma sequência.

Representação como uma fração contínua[editar | editar código-fonte]

Euler provou que o número e é representado como a fração contínua simples infinita[1] (sequência A003417 na OEIS):

e = [2; 1, \textbf{2}, 1, 1, \textbf{4}, 1, 1, \textbf{6}, 1, 1, \textbf{8}, 1, 1, \ldots, \textbf{2n}, 1, 1, \ldots]. \,

Sua convergência pode ser triplicada permitindo apenas um número fracional:

 e = [ 1 , \textbf{0.5} , 12 , 5 , 28 , 9 , 44 , 13 , 60 , 17 , \ldots , \textbf{4(4n-1)} , \textbf{4n+1} , \ldots]. \,

Seguem algumas frações contínuas generalizadas infinitas de e. A segunda é gerada da primeira por uma simples transformação de equivalência. A última é equivalente a [1, 0.5, 12, 5, 28, 9, ...].


e= 2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{2}{3+\cfrac{3}{4+\cfrac{4}{5+\ddots}}}}} = 2+\cfrac{2}{2+\cfrac{3}{3+\cfrac{4}{4+\cfrac{5}{5+\cfrac{6}{6+\ddots\,}}}}}
e = 2+\cfrac{1}{1+\cfrac{2}{5+\cfrac{1}{10+\cfrac{1}{14+\cfrac{1}{18+\ddots\,}}}}} = 1+\cfrac{2}{1+\cfrac{1}{6+\cfrac{1}{10+\cfrac{1}{14+\cfrac{1}{18+\ddots\,}}}}}

Esta última é um caso especial da fórmula geral para a função exponencial:

e^\frac{2x}{y} = 1+\cfrac{2x}{y-x+\cfrac{x^2}{3y+\cfrac{x^2}{5y+\cfrac{x^2}{7y+\cfrac{x^2}{9y+\ddots\,}}}}}


Translation Latin Alphabet.svg
Este artigo ou secção está a ser traduzido de en:List of representations of e. Ajude e colabore com a tradução.

Como uma série infinita[editar | editar código-fonte]

The number e can be expressed as the sum of the following infinite series:

e^x = \sum_{k=0}^\infty \frac{x^k}{k!} for any real number x.

In the special case where x = 1, or −1, we have:

e = \sum_{k=0}^\infty \frac{1}{k!}[2] , and
e^{-1} = \sum_{k=0}^\infty \frac{(-1)^k}{k!}

Other series are the following:

e = \left [ \sum_{k=0}^\infty \frac{1-2k}{(2k)!} \right ]^{-1} [3]
e =  \frac{1}{2} \sum_{k=0}^\infty \frac{k+1}{k!}
e =  2 \sum_{k=0}^\infty \frac{k+1}{(2k+1)!}
e =   \sum_{k=0}^\infty \frac{3-4k^2}{(2k+1)!}
e =   \sum_{k=0}^\infty \frac{(3k)^2+1}{(3k)!}
e =   \left [ \sum_{k=0}^\infty \frac{4k+3}{2^{2k+1}\,(2k+1)!} \right ]^2
e =  \left [ -\frac{12}{\pi^2} \sum_{k=1}^\infty \frac{1}{k^2} \ \cos \left ( \frac{9}{k\pi+\sqrt{k^2\pi^2-9}} \right ) \right ]^{-1/3}
e =  \sum_{k=1}^\infty \frac{k^n}{B_n(k!)} where B_n is the n^{th} Bell number. Some few examples: (for n=1,2,3)
e =  \sum_{k=1}^\infty \frac{k}{k!} = \sum_{k=1}^\infty \frac{1}{(k-1)!} = \sum_{k=0}^\infty \frac{1}{k!}
e =  \sum_{k=1}^\infty \frac{k^2}{2(k!)}
e =  \sum_{k=1}^\infty \frac{k^3}{5(k!)}
e =  \sum_{k=1}^\infty \frac{k^4}{15(k!)}
e =  \sum_{k=1}^\infty \frac{k^5}{52(k!)}
e =  \sum_{k=1}^\infty \frac{k^6}{203(k!)}
e =  \sum_{k=1}^\infty \frac{k^7}{877(k!)}

As an infinite product[editar | editar código-fonte]

The number e is also given by several infinite product forms including Pippenger's product

 e= 2 \left ( \frac{2}{1} \right )^{1/2} \left ( \frac{2}{3}\; \frac{4}{3} \right )^{1/4} \left ( \frac{4}{5}\; \frac{6}{5}\; \frac{6}{7}\; \frac{8}{7} \right )^{1/8} \cdots

and Guillera's product [4] [5]

 e = \left ( \frac{2}{1} \right )^{1/1} \left (\frac{2^2}{1 \cdot 3} \right )^{1/2} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/3} 
\left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/4}  \cdots ,

where the nth factor is the nth root of the product

\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}},

as well as the infinite product

 e = \frac{2\cdot 2^{(\ln(2)-1)^2} \cdots}{2^{\ln(2)-1}\cdot 2^{(\ln(2)-1)^3}\cdots }.

As the limit of a sequence[editar | editar código-fonte]

The number e is equal to the limit of several infinite sequences:

 e= \lim_{n \to \infty} n\cdot\left ( \frac{\sqrt{2 \pi n}}{n!} \right )^{1/n}   and
 e=\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} (both by Stirling's formula).

The symmetric limit,[6] [7]

e=\lim_{n \to \infty} \left [ \frac{(n+1)^{n+1}}{n^n}- \frac{n^n}{(n-1)^{n-1}} \right ]

may be obtained by manipulation of the basic limit definition of e. Another limit is[8]

e= \lim_{n \to \infty}(p_n \#)^{1/p_n}

where  p_n is the nth prime and  p_n \# is the primorial of the nth prime.

Also:

e^x= \lim_{n \to \infty}\left (1+ \frac{x}{n} \right )^n.

In the special case that x = 1, the result is the famous statement:

e= \lim_{n \to \infty}\left (1+ \frac{1}{n} \right )^n.

Na trigonometria[editar | editar código-fonte]

Trigonometricamente, e pode ser escrito como a soma de duas funcões hiperbólicas:

e = \sinh(1) + \cosh(1)\,

Referências

  1. Sandifer, Ed, How Euler Did It: Who proved e is Irrational?, MAA Online, http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2028%20e%20is%20irrational.pdf, visitado em 23 de junho de 2012 
  2. Brown, Stan (2006-08-27). It’s the Law Too — the Laws of Logarithms. Oak Road Systems. Página visitada em 2008-08-14.
  3. Formulas 2–7: H. J. Brothers, Improving the convergence of Newton's series approximation for e. The College Mathematics Journal, Vol. 35, No. 1, 2004; pages 34–39.
  4. J. Sondow, A faster product for pi and a new integral for ln pi/2, Amer. Math. Monthly 112 (2005) 729–734.
  5. J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent,Ramanujan Journal 16 (2008), 247–270.
  6. H. J. Brothers and J. A. Knox, New closed-form approximations to the Logarithmic Constant e. The Mathematical Intelligencer, Vol. 20, No. 4, 1998; pages 25–29.
  7. Khattri, Sanjay. From Lobatto Quadrature to the Euler constant e.
  8. S. M. Ruiz 1997