Fração

Origem: Wikipédia, a enciclopédia livre.
(Redirecionado de Denominador)
Ir para: navegação, pesquisa
Searchtool.svg
Esta página ou secção foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa. Se tem algum conhecimento sobre o tema, por favor verifique e melhore a consistência e o rigor deste artigo. Pode encontrar ajuda no WikiProjeto Matemática.

Se existir um WikiProjeto mais adequado, por favor corrija esta predefinição. Este artigo está para revisão desde Abril de 2012.

Fração (AO 1945: fracção) é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou "quebrado (do verbo frangere: "quebrar").

Representação gráfica de fração. Observa-se facilmente a equivalência entre 1/4 e 1/2.

Surgimento e sua Precisão[editar | editar código-fonte]

No antigo Egito por volta do ano 3000 a.C., o faraó Sesóstris distribuiu algumas terras às margens do Rio Nilo para alguns agricultores privilegiados. O privilégio em possuir essas terras era porque todo ano, no mês de julho, as águas do rio inundavam essa região ao longo de suas margens e fertilizavam os campos. Essas terras, portanto, eram bastante valorizadas.

Porém, era necessário remarcar os terrenos de cada agricultor em setembro, quando as águas baixavam. Os responsáveis por essa marcação eram os agrimensores, que também eram chamados de estiradores de corda, pois mediam os terrenos com cordas nas quais uma unidade de medida estava marcada.

Frações antigas.gif

Essas cordas eram esticadas e se verificava quantas vezes a tal unidade de medida cabia no terreno, mas nem sempre essa medida cabia inteira nos lados do terreno. Esse problema só foi resolvido quando os egípcios criaram um novo número: o número fracionário. Ele era representado com o uso de frações, porém os egípcios só entendiam a fração como uma unidade (ou seja, frações cujo numerador é igual a 1).

Eles escreviam essas frações com uma espécie de sinal oval escrito em cima do denominador. Mas os cálculos eram complicados, pois no sistema de numeração que usavam no antigo Egito os símbolos se repetiam muitas vezes.[1]

Só ficou mais fácil trabalhar com as frações quando os hindus criaram o Sistema de numeração decimal, quando elas passaram a ser representadas pela razão de dois números naturais.

Desde então, as frações foram usadas para a resolução de diversos tipos de problemas matemáticos. Uma das formas mais correntes de se trabalhar com frações é a porcentagem, em que se expressa uma proporção ou uma relação a partir de uma fração cujo denominador é 100. O uso de frações também é de valia extrema para a resolução de problemas que envolvem regra de três.

Definições[editar | editar código-fonte]

De modo simples, pode-se dizer que uma fração de um número, representada de modo genérico como designa o inteiro dividido em partes iguais ao qual usa-se o número de partes.[2] Neste caso, corresponde ao numerador, enquanto corresponde ao denominador, que não pode ser igual a zero.[2][3]

O denominador corresponde ao número de partes que um todo será dividido e o numerador corresponde ao número de partes que serão consideradas.

Ex.: Uma professora tem que dividir três folhas de papel de seda entre quatro alunos, como ela pode fazer isso?

Cada aluno ficara com 3:4 = (lê-se três-quartos) da folha. Ou seja, você vai dividir cada folha em 4 partes e distribuir 3 para cada aluno.

Por exemplo, a fração (lê-se cinquenta e seis-oitavos) designa o quociente de 56 por 8. Ela é igual a 7, pois 7 × 8 = 56. A divisão é a operação inversa da multiplicação.

Os números expressos em frações são chamados de números racionais, cujo conjunto é representado por Assim, o conjunto dos números racionais podem ser escritos na forma sendo e o que resulta em: [4][5]

Outro modo de enxergar frações é imaginar uma linha reta entre os números 0 e 1. As frações serão pontos nessa reta. Por exemplo, a fração é representada por um ponto exatamente na metade dessa reta.

É possível efetuar operações básicas com as frações: adição, subtração, multiplicação, divisão, potenciação, radiciação.

Nomenclatura de frações[editar | editar código-fonte]

A leitura de uma fração depende do seu denominador, podendo ser dividida em dois grupos.

O primeiro grupo compreende os denominadores iguais a , , , , , , , , , e .

Lê-se primeiro o numerador seguido de seu denominador.

Três meios; Dois Sextos; Um décimo;

Um terço; Quatro sétimos; Oito centésimos;

Cinco quartos; Seis oitavos; Dois milésimos

Sete Quintos; Três nonos;

O segundo grupo compreende os denominadores que não pertencem ao primeiro, e acrescentamos a palavra AVOS

Sete quinze avos;

Treze cinquenta e sete avos;

Quarenta e cinco cento e oitenta e dois avos;

Sete vinte e um avos.

Tipos de Frações[editar | editar código-fonte]

Frações Equivalentes[editar | editar código-fonte]

[6]Duas ou mais frações que representam a mesma porção da unidade. É obtida quando multiplicamos ou dividimos o numerador e denominador de uma fração por um mesmo número, diferente de zero.

Exemplo: e

A partir da definição temos que , e são Equivalentes.

Podemos verificar se duas frações são equivalentes multiplicando os números de forma cruzada.

Exemplo:

O conjunto de frações equivalentes a uma certa fração chama-se Classe de Equivalência.

Frações Irredutíveis e Simplificação de Frações[editar | editar código-fonte]

Para simplificar uma fração, devemos dividir sucessivamente o numerador e o denominador por um divisor comum, até obtermos a fração com os menores termos possíveis. Outra forma de simplificação é pelo MDC(Máximo Divisor Comum), onde efetuamos uma única divisão.

A fração, cujo numerador e denominador são primos entre si, é denominada Fração Irredutível ou Forma simplificada, pois não é permitido que haja simplificação.

Exemplo:

Simplificando sucessivamente ou pelo MDC

Observe que é Fração Irredutível de .

Frações Próprias[editar | editar código-fonte]

É a fração, onde o numerador é menor que o denominador e que representa parte do inteiro, isto é, representa um valor maior que zero e menor que um.

Exemplos: , ,

Frações Impróprias[editar | editar código-fonte]

A fração que não é própria é denominada imprópria,o seu numerador é maior ou igual ao denominador.[2] e representam valores maiores que 1 ou o zero ou o inteiro.

Exemplos: , ,

Frações Aparentes[editar | editar código-fonte]

É a fração onde o numerador é múltiplo do denominador, elas representam um número inteiro, mas em forma de fração. Frações aparentes são particularidades das frações impróprias.

Exemplos: , ,

Frações Mistas[editar | editar código-fonte]

É a fração constituída por uma parte inteira e uma fracionária.[6]  Pode-se encontrar uma fração imprópria a partir do número misto.

Exemplos: que é equivalente a fração imprópria

que é equivalente a fração imprópria .

Frações Compostas[editar | editar código-fonte]

São frações onde o numerador, o denominador ou ambos possuem frações, também são conhecidas por Frações Complexas.

Exemplo: , , ,

Frações Unitárias[editar | editar código-fonte]

É a fração onde o numerador é igual a e o denominador é um inteiro positivo. Exemplo:

A soma das frações unitárias, distintas entre si é chamada de Fração Egípcia, pois para os egípcios era mais prático e fácil de comparar as quantidades dessa forma. Exemplo: .

Para explicar os métodos egípcios nas decomposições de uma fração em uma soma de frações unitárias, usaremos duas afirmações:

Toda fração da forma pode ser decomposta como:

com , e variando de a .

Dada a fração , podemos transformar o denominador em um produto de por .

, onde com , , e

Fração Contínua[editar | editar código-fonte]

Também conhecida como Fração Continuada, é uma forma de representar números reais. A fração contínua de um número racional pode ser representada por uma sequência finita de inteiros, já a de um número irracional é representada por uma sequência infinita de inteiros.

Para obter uma fração continua, podemos aplicar o algoritmo da divisão de Euclides sucessivamente em uma divisão de inteiros. Usando um racional irredutível, temos que: tal que , com

Logo, ,

Para e , obtemos e tal que, , com

Logo,

E assim sucessivamente, , com

Como o algoritmo da divisão de Euclides é um processo finito, escrevemos essa fração contínua que representa o racional dessa maneira:

.

Fração Decimal[editar | editar código-fonte]

Toda fração cujo denominador é uma potência positiva de 10 é chamada de fração decimal. Essas frações podem ser representadas por um número decimal.

Exemplos: , ,

Teorema: A parte fracionária de cada fração decimal(positiva) pode ser decomposta como uma soma de frações decimais especiais, e cada uma delas tem como numerador um dos dígitos que expressa o denominador da fração original.

Podemos verificar que todo número racional determinado por uma fração decimal terá quantidade finita de dígitos na parte fracionária, ou seja tem expansão finita.

.

Adição e subtração[editar | editar código-fonte]

A adição e a subtração de frações de denominadores diferentes são feitas utilizando mínimo múltiplo comum, ou MMC. Por exemplo:

pois

Divisão[editar | editar código-fonte]

Para efetuar a divisão entre duas frações, multiplica-se a fração que está no numerador pelo inverso da fração que está no denominador. Ex.:

No último passo foi feita Simplificação de Frações.

Exponenciação ou potenciação de frações[editar | editar código-fonte]

É indiferente resolver primeiro a exponenciação ou a divisão:[7]

Efetuando-se primeiramente a divisão obtém-se o mesmo resultado:

Radiciação[editar | editar código-fonte]

A raiz de uma fração é feita seguindo-se os mesmos passos da potenciação:[7]

E, analogamente, é possível fazer a divisão antes da radiciação.

Expoente fracionário[editar | editar código-fonte]

Da mesma forma que na divisão entre frações, a ocorrência de expoente fracionário causa a inversão da operação:

Comparação entre frações[editar | editar código-fonte]

Uma propriedade importante para se comparar frações é a seguinte:

Se e são frações irredutíveis, com a, b, c e d inteiros positivos, então

Para estabelecer comparação entre frações, é preciso que elas tenham o mesmo denominador. Isso é obtido através do menor múltiplo comum, como foi visto na adição.

  ?  

O MMC entre 5 e 7 é 35.

   

   

A comparação entre frações com denominadores diversos vale-se do fato de que há frações que são equivalentes entre si, pois:

  e  

Uma vez igualados os denominadores, pode-se fazer a comparação entre as frações:

logo

Conversão entre frações impróprias e mistas[editar | editar código-fonte]

Uma fração do tipo imprópria pode ser convertida para mista e vice-versa.

Para tanto, basta dividir o numerador pelo denominador. O resto será o numerador da fração mista e o divisor será o denominador. Como o quociente da divisão 7 ÷ 3 é igual a 2 e o resto é 1, tem-se que a fração acima, escrita como fração mista, terá a seguinte notação:

Para fazer o caminho inverso, basta multiplicar o denominador pela parte inteira e somar o resultado ao numerador, mantendo-se o denominador. Como o produto 3 × 2 é igual a 6 e a soma 6 + 1 é igual a 7, obtém-se novamente a notação sob a forma de fração imprópria, como visto acima.

Corpo de Frações[editar | editar código-fonte]

Ver artigo principal: Corpo de frações

Se um conjunto A tem duas operações binárias + e x satisfazendo determinadas propriedades, pode-se perguntar em que condições é possível estender A para um outro conjunto B com operações binárias + e x, de forma que (B,+,x) seja um corpo e as operações (A+B) e (AxB) dêem o mesmo resultado quando efetuadas em A ou em B. Quando possível, temos a construção do corpo de frações.

Notas e referências

  1. Luiz, Wilson (2003). A História da Matemática <http://educar.sc.usp.br/licenciatura/2003/hm/page03.htm>. Visitado em 2 de abril de 2012
  2. a b João José Luiz Vianna, Elementos de Arithmetica Capítulo III, Theoria das fracções ordinárias, 98 [Wikisource]
  3. NOVA ESCOLA - REPORTAGEM - Frações são números? Um debate animado
  4. Conjuntos Numéricos <http://www.fund198.ufba.br/apos_cnf/conjunu.pdf>. Visitado em 4 de abril de 2012
  5. Conjuntos Numéricos <http://www.mundovestibular.com.br/articles/5951/1/Conjuntos-Numericos/Paacutegina1.html>. Visitado em 4 de abril de 2012
  6. Giovanni, José Ruy; Castrucci, Benedicto; Giovanni Júnior (2012). A conquista da Matemática (São Paulo: FTD S.A.). ISBN 9788532283245. 
  7. a b ARANTES, Flávia Borges; CASTRO, Marco Antonio Claret de; COSTA, Patrícia Oliveira. Matemática Elementar. São João del-Rei: UFSJ, 2010. Disponível em: <http://www.ufsj.edu.br/portal2-repositorio/File/demat/PASTA-PROF/claret/matematica_elementar_versao_final27072011.doc>.