Física mesoscópica
Em física da matéria condensada, a física mesoscópica descreve fenômenos que ocorrem em uma escala de tamanhos intermediária entre o macroscópico e o microscópico. Esta região intermediaria permite interpolar entre o regime atômico-molecular e o limite macroscópico, dominado este último pelas propriedades de volume, que são objetos usuais de estudo em física da matéria condensada.
Na escala de nanometros e dezenas de nanometros, os elétrons podem propagar-se sem sofrer espalhamento inelástico (regime balístico[nt 1]) e a fase da função de onda pode manter sua coerência em escala da ordem do tamanho do sistema, dando lugar aos típicos fenômenos de interferência quântica.[2] Na física mesoscópica a característica ondulatória dos elétrons é mais evidente do que na física clássica e o processo de condução dos elétrons é melhor representado pela função de onda que os descreve. Exemplos da aplicação de sistemas mesoscópicos, os sistemas quânticos que têm dimensões maiores que a escala atômica e dimensões menores a objetos macroscópicos,[3] são os antidots, fios e anéis quânticos[4] e os pontos quânticos que são cavidades abertas por onde os elétrons são limitados a fluirem [5]
Os efeitos coerentes mais importantes em física mesoscópica são a localização fraca[6]e flutuação universal da condutância.[7][8][9] A presença destes efeitos é devido à coerência de fase dos elétrons que é mantida durante o processo de transporte de cargas. A perda da coerência de fase ou decoerência leva ao desaparecimento desses efeitos[1][10]
Notas[editar | editar código-fonte]
- ↑ Inicialmente o foco da física mesóscopica era o regime difusivo, no qual o movimento dos elétrons consiste em colisões aleatórias entre as impurezas. A partir do avanço tecnológico, o regime balístico passou a ser o alvo de pesquisa, sendo neste o movimento aleatório dos elétrons determinado pelas condições de contorno da amostra[1]
Referências
- ↑ a b Método Diagramático Aplicado ao Bilhar de Dirac Caótico por Marília Santos Melo de Barros, publicado pela Universidade Federal Rural de Pernambuco (2014)
- ↑ Tunelamento e transporte quântico em sistemas mesoscópicos : fundamentos e aplicações por César Augusto Dartora - Código: vtls000347839, publicado pelo Instituto de Fisica Gleb Wataghin da Universidade Estadual de Campinas (2005)
- ↑ NETTO, A. L. D. S. Dinâmica Quântica em Espaços Curvos:aplicações em Matéria Condensada. 2006. 63 Dissertação de Mestrado Universidade Federal da Paraiba
- ↑ Efeito da Distorção e de Defeitos Topológicos nos níveis de Energia de Anéis Quânticos por Jorge M. Silva Santos, publicado pela a Universidade Federal do Vale do São Francisco (2015)
- ↑ TRANSPORTE QUÂNTICO DECOERENTE EM SISTEMAS MESOSCÓPICOS por Elenilda Josefa de Oliveira e Francisco Assis Gois de Almeida, publicado pela Universidade Federal de Sergipe (2015)
- ↑ Altshuler, B. L.; D. Khmel'nitzkii; A. I. Larkin; P. A. Lee (1980). «Magnetoresistance and Hall effect in a disordered two-dimensional electron gas». Phys. Rev. B. 22. 5142 páginas. Bibcode:1980PhRvB..22.5142A. doi:10.1103/PhysRevB.22.5142
- ↑ R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (1998)
- ↑ Lee, P.; Stone, A. (1985). «Universal Conductance Fluctuations in Metals». Physical Review Letters. 55 (15): 1622–1625. Bibcode:1985PhRvL..55.1622L. PMID 10031872. doi:10.1103/PhysRevLett.55.1622
- ↑ Altshuler, B. L. (1985), Pis'ma Zh. Eksp. Teor. Fiz. 41: 530 [JETP Lett. 41: 648] - Fluctuations in the extrinsic conductivity of disordered conductors, Al'tshuler B. L., VOLUME 41, NÚMERO 12, PÁGINA 648, JETP Letters
- ↑ Física mesoscópica de elétrons e fótons por Felipe A. Pinheiro, publicado pelo Instituto de Física Universidade Federal do Rio de Janeiro (2013)