Física de partículas

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde junho de 2009). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Searchtool.svg
Esta página ou secção foi marcada para revisão, devido a inconsistências e/ou dados de confiabilidade duvidosa. Se tem algum conhecimento sobre o tema, por favor verifique e melhore a consistência e o rigor deste artigo. Pode encontrar ajuda no WikiProjeto Física.

Se existir um WikiProjeto mais adequado, por favor corrija esta predefinição.

Física






As Equações de Maxwell
Física
História da Física
Filosofia da Física

A Física de partículas é um ramo da Física que estuda os constituintes elementares da matéria e da radiação, e a interação entre eles e suas aplicações. É também chamada de Física de altas energias, porque muitas partículas elementares só podem ser criadas a energias elevadas, logo a detecção destas também é possível apenas a altas energias de aceleração. O elétron e o próton foram as únicas partículas aceleradas até os dias de hoje, outras nunca foram detectadas (como o gráviton) e as restantes foram detectadas através da radiação cósmica (como o méson pi e o méson mu).

A Física de partículas, estudada pela Mecânica Quântica (parte da Física Moderna), busca o fundamental, o nível mais básico da matéria e da Natureza. Todo o nosso mundo visível se fundamenta nesse nível invisível das partículas elementares. Podemos chamar de partículas elementares toda a porção indivisível da matéria, como os elétrons, os fótons, os quarks e outras.

Breve história[editar | editar código-fonte]

Os gregos antigos formularam dois conceitos sobre Física de Partículas. O primeiro foi formulado por Tales de Mileto e diz respeito à eletricidade. O segundo foi formulado por Demócrito e diz que toda matéria pode ser dividida até chegar em um ponto que se encontraria a parte mais fundamental e indivisível da matéria a que Demócrito deu o nome de átomo. Ele dizia que o átomo não poderia ser criado ou destruído e que toda a matéria conhecida seria formada por diversas combinações de diferentes átomos. Suas ideias se aproximavam muito dos atuais conceitos de física atômica.

As ideias de Demócrito só voltaram a ser revistas no século XIX, por Dalton. As de Tales de Mileto foram revistas a partir do século XV.

Principais partículas e antipartículas conhecidas: Elétron, pósitron, próton, antipróton, nêutron, antinêutron, neutrino, antineutrino, Mésons (pi+, pi0, pi-, mu+, mu-, k+, k-, k0), hiperons (lambda 0, sigma +, sigma 0, sigma -) e fótons.

Modelo de Thomson

Partículas subatômicas[editar | editar código-fonte]

Ver artigo principal: Partícula subatômica

A pesquisa moderna da física da partícula é focalizada nas partículas subatômicas, que têm dimensões menores que as dos átomos. Incluem constituintes atômicos tais como elétrons (no modelo padrão ele é um lépton, junto com o muon, o tau e os respectivos neutrinos.), prótons, e nêutrons (os prótons e os nêutrons são partículas compostas, feita de quarks), partículas produzidas por processos radiativos e de espalhamento tais como fótons, neutrinos, e múons, bem como uma larga escala de partículas exóticas.

  • Elétron: Partícula mais conhecida e mais estudada, pertence a categoria de Léptons. Massa de repouso: 9,1083 x 10−31 kg, carga elétrica: − 1,602 x 10−19 C, Spin: 1/2 ħ
  • Pósitron: Já era previsto por Paul Dirac e sua existência foi confirmada em 1930-1940 pelo físico americano Anderson. É a antipartícula do elétron, possui massa de repouso e spin iguais aos do elétron. Carga elétrica de mesmo módulo e sinal contrário.
  • Próton: É um núcleon partícula que se localiza no núcleo. Também pode ser classificada como um Bárion (tipo de partícula formada por 3 Quarks ligados por Glúons) e possui massa 1836,12 vezes a massa do elétron. Mesmo spin e carga de sinal contrário.
  • Antipróton: Descoberto em 1955. Já se suspeitava que existissem outras antipartículas desde a descoberta do pósitron. Possui mesma massa e spin que o próton, mas carga de sinal oposto (sinal negativo).
  • Nêutron: Como o próton, é um nucleon e também é classificado como Bárion. Possui carga nula, massa 1836,65 vezes a massa do elétron e spin 1/2 ħ. Pode se desintegrar dando origem a um próton, um elétron e um neutrino apenas quando está livre (fora do núcleo).
  • Antinêutron: Possui exatamente as mesmas características do nêutron, mas organização interna diferente. Um nêutron é composto de um quark up e dois quarks down. Logo, imagina-se que o antinêutron seja formado por um antiquark up e dois antiquarks down.
  • Fótons: É a partícula de mediação da força eletromagnética, classificada como Bóson, são chamados de quantum do campo eletromagnético. Possui massa e carga elétrica zero e spin 1 ħ.
  • Grávitons: Teoricamente é a partícula mediadora da força Gravitacional, também sendo classificada como um Bóson, analogamente ao fóton, o gráviton é o quantum do campo gravitacional. Não se tem muita informação experimental sobre ele. Só existe com velocidades próximas ou iguais a c (velocidade da luz no vácuo).
  • Mésons: São uma classe de Hádrons quer dizer, massa média. São partículas que possuem massa entre a do elétron e a do próton. Existem oito tipos de mésons:

- Mésons pi +, - e 0, méson mu +, - , méson k+, - e 0.

  • Híperons: Partículas de massa maior que a do próton. Pode ser dividido em seis tipos:

- Hiperons lambda 0, hiperon sigma +, -, 0 , hiperon csi+, 0

  • Neutrinos: O neutrino surge da desintegração de um nêutron em próton e elétron. Possui massa menor que 0,000005 vezes a massa do elétron e até agora foram descobertos quatro tipos de neutrinos diferentes.

Interações fundamentais[editar | editar código-fonte]

Ver artigo principal: Interações fundamentais

São quatro as interações fundamentais:

  1. Interação gravitacional
  2. Interação eletromagnética
  3. Interações nucleares fortes - Possuem natureza atrativa e repulsiva, dependendo da distância. Se estiver a uma distância d maior que 0,4 fermi, torna-se repulsiva. Possui intensidade maior que a força gravitacional e, até a uma determinada distância (raio do núcleo), maior que a eletromagnética. É responsável pela união de prótons e nêutrons no núcleo, visto que é independente da carga elétrica.
  4. Interação nuclear fraca - É mais forte que a interação gravitacional. Há uma teoria que une a interação fraca com a eletromagnética, afirmando que trata-se da mesma interação sob duas formas chamada interação eletrofraca. Foi formulada e está sendo desenvolvida uma teoria de unificação das 4 interações fundamentais conhecida como Teoria da Supergravidade.

Livros recomendados[editar | editar código-fonte]

  • O Discreto charme das partículas elementares (Cristina Abdalla)

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]

Commons
O Commons possui imagens e outras mídias sobre Física de partículas