Número algébrico
Este artigo não cita fontes confiáveis. (Julho de 2016) |
Em matemática, um número algébrico é qualquer número real ou complexo que é solução de alguma equação polinomial com coeficientes inteiros. Em um sentido mais amplo, diz-se que um número é algébrico sobre um corpo quando ele é raiz de um polinômio com coeficientes neste corpo.
Todos os números racionais são algébricos porque qualquer fracção do tipo é solução de . Alguns números irracionais como e são também algébricos, porque são as soluções de e , respectivamente. Mas nem todos os reais são algébricos – como exemplo refiram-se π e . A um número real ou complexo não algébrico dá-se o nome de número transcendente.
Se um número algébrico for solução de uma equação de grau com coeficientes inteiros e de nenhuma de grau inferior, diz-se que é um número algébrico de grau .
O corpo dos números algébricos
[editar | editar código-fonte]A soma, subtração, produto e quociente de dois números algébricos é novamente um número algébrico, logo eles formam um corpo. Pode-se mostrar que as soluções de equações polinomiais com coeficientes algébricos são novamente números algébricos. Posto de outro modo, o corpo dos números algébricos é algebricamente fechado De facto, é o menor corpo algebricamente fechado que contém os racionais, pelo que é a aderência algébrica do corpo dos números racionais.
Números definidos por radicais
[editar | editar código-fonte]Todos os números que possam ser escritos usando uma forma finita de adições, subtrações, multiplicações, divisões, e raízes de grau n (n inteiro positivo) são algébricos. O contrário, no entanto, não é verdadeiro, pois há expressões algébricas que não podem ser representadas dessa maneira. Todos esses números podem ser vistos como soluções para equações polinomiais de grau ≥ . Isto é o que diz a Teoria de Galois.
Inteiros algébricos
[editar | editar código-fonte]Um número algébrico que é raiz de uma equação polinomial de grau , com coeficientes inteiros, onde o coeficiente do termo de grau é igual a diz-se um inteiro algébrico. Por exemplo, √ e são inteiros algébricos.
A soma, a diferença e o produto de inteiros algébricos é novamente um inteiro algébrico; por outras palavras, os inteiros algébricos formam um anel. O nome «inteiro algébrico» tem origem no facto de os únicos números racionais que são inteiros algébricos serem os números inteiros.
Números algébricos sobre um corpo
[editar | editar código-fonte]Sejam K e L corpos, e . Então, considerando-se todos os polinômios p(x) não-nulos com coeficientes em K, temos que:
- é transcendente sobre K se
- é algébrico sobre K se
Por exemplo, é transcendente sobre , mas é algébrico sobre (porque é uma raiz de ).
Aproximação por números racionais
[editar | editar código-fonte]Todo número real (como os números algébricos) pode ser aproximado por números racionais. Uma observação aparentemente paradoxal é que os números algébricos são ruins de serem aproximados por números racionais, ou seja, ao se aproximar
o erro tende a ser grande quando comparado com o denominador q. Isso pode ser usado para mostrar que alguns números não são algébricos. Para maiores detalhes, ver artigo sobre Números de Liouville.