Número hiper-real

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
NoFonti.svg
Este artigo ou se(c)ção cita uma ou mais fontes fiáveis e independentes, mas ela(s) não cobre(m) todo o texto (desde Setembro de 2013).
Por favor, melhore este artigo providenciando mais fontes fiáveis e independentes e inserindo-as em notas de rodapé ou no corpo do texto, conforme o livro de estilo.
Encontre fontes: Googlenotícias, livros, acadêmicoScirusBing. Veja como referenciar e citar as fontes.
Conjuntos de números

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}\sub\cdots

Naturais \mathbb{N}
Inteiros \mathbb{Z}
Racionais \mathbb{Q}
Reais \mathbb{R}
Imaginários
Complexos \mathbb{C}
Números hiper-reais
Números hipercomplexos

Quaterniões \mathbb{H}
Octoniões \mathbb{O}
Sedeniões \mathbb{S}
Complexos hiperbólicos \mathbb{R}^{1,1}
Quaterniões hiperbólicos
Bicomplexos
Biquaterniões
Coquaterniões
Tessarines

Os números hiper-reais.

O conjunto dos números hiper-reais é uma maneira de tratar quantidades infinitas e infinitesimais. Os hiper-reais, ou reais não padronizados, *R, são uma extensão dos números reais R que contém números maiores do que qualquer coisa na forma

1 + 1 + \cdots + 1. \,

Esse número é infinito, e seu inverso é infinitesimal. O termo "hiper-real" foi introduzido por Edwin Hewitt em 1948.[1]

Os números hiper-reais satisfazem o princípio da transferência, uma versão rigorosa da Lei da Continuidade heurística de Leibniz. O princípio da transferência afirma que as verdadeiras declarações de primeira ordem sobre R também são válidas no *R. Por exemplo, a lei comutativa da adição, x + y = y + x, vale do mesmo modo para os hiper-reais e para os reais; desde que R seja um campo real fechado, então é *R. Desde que \sin{\pi n}=0 para todos os inteiros n, há também um \sin{\pi H}=0 para todos hiper-inteiros H. O princípio da transferência para ultrapotências é uma consequência do Teorema de Łoś' de 1955.

Preocupações sobre a Correção de argumentos envolvendo números infinitesimais remonta a antiga matemática Grega, com Archimedes trocando essas provas com as que usavam outras técnicas como o método da exaustão.[2] Nos anos de 1960, Abraham Robinson provou que hiper-reais eram logicamente consistentes se e somente se os reais fossem. Isso amenizou o medo de que qualquer prova envolvendo infinitesimais pudesse ser defeituosa, fornecendo que elas eram manipuladas de acordo com as regras de lógica as quais Robinson delineou.

A aplicação dos números hiper-reais e, em particular, o princípio da transferência para problemas de análises matemáticas são chamados de análises não padronizadas. Uma aplicação imediata é a definição dos conceitos básicos de análises como derivação e integração de forma direta, sem passar por complicações lógicas de múltiplos quantificadores. Portanto, a derivada def(x) se torna f'(x) = {\rm st}\left( \frac{f(x+\Delta x)-f(x)}{\Delta x} \right) para um infinitesimal \Delta x, onde st(·) denota um função padrão, que associa a todo hiper-real finito um único real infinitamente perto dele. Similarmente, a integral é definida como parte padrão da soma infinita adequada.

Ver também[editar | editar código-fonte]

Portal A Wikipédia possui o portal:

Referências

  1. Hewitt (1948), p. 74, como reportado em Keisler (1994)
  2. Ball, p. 31

Leitura detalhada[editar | editar código-fonte]

  • Ball, W.W. Rouse (1960), A Short Account of the History of Mathematics (4th ed. [Reprint. Original publication: London: Macmillan & Co., 1908] ed.), New York: Dover Publications, pp. 50–62, ISBN 0-486-20630-0 
  • Hatcher, William S. (1982) "Calculus is Algebra", American Mathematical Monthly 89: 362–370.
  • Hewitt, Edwin (1948) Rings of real-valued continuous functions. I. Trans. Amer. Math. Soc. 64, 45—99.
  • Jerison, Meyer; Gillman, Leonard (1976), Rings of continuous functions, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90198-5 
  • Keisler, H. Jerome (1994) The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, 207—237, Synthese Lib., 242, Kluwer Acad. Publ., Dordrecht.
  • Kleinberg, Eugene M.; Henle, James M. (2003), Infinitesimal Calculus, New York: Dover Publications, ISBN 978-0-486-42886-4 

Ligações externas[editar | editar código-fonte]


Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.