Walter Schottky

Origem: Wikipédia, a enciclopédia livre.
Ir para: navegação, pesquisa
Walter Schottky
Física e engenharia eletrônica
Nacionalidade Alemanha Alemão
Residência  Alemanha
Nascimento 23 de julho de 1886
Local Zurique
Morte 4 de março de 1976 (89 anos)
Local Forchheim
Atividade
Campo(s) Física e engenharia eletrônica
Instituições Universidade Friedrich Schiller de Jena, Universidade de Würzburgo, Universidade de Rostock, Siemens AG
Alma mater Universidade Humboldt de Berlim
Tese 1912: Zur relativtheoretischen Energetik und Dynamik
Orientador(es) Max Planck e Heinrich Rubens[1]
Prêmio(s) Medalha Hughes (1936), Anel Werner von Siemens (1964)

Walter Hermann Schottky (Zurique, Suíça, 23 de julho de 1886Pretzfeld, Alemanha Ocidental, 4 de março de 1976) foi um físico alemão.

Contribuiu para o desenvolvimento inicial da teoria dos fenômenos de emissão de elétrons e íons, inventou a tela-grade do tubo de vácuo em 1915 e o pêntodo em 1919 enquanto trabalhava na Siemens, e mais tarde fez muitas contribuições significativas nas áreas de dispositivos semicondutores, física e da tecnologia.

Educação[editar | editar código-fonte]

Graduado na Academia Steglitz, Berlim, Alemanha em 1904. Obteve o bacharelado em física, na Universidade de Berlim, em 1908. Obteve um doutorado em física na Universidade de Berlim em 1912, orientado por Max Planck e Heinrich Rubens, com a tese Relativtheoretischen Zur Energetik und Dynamik.

Carreira[editar | editar código-fonte]

Seu período de pós-doutorado trascorreu na Universidade de Jena (1912-1914). Em seguida, lecionou na Universidade de Würzburg (1919-1923). Foi professor de física teórica na Universidade de Rostock (1923-1927). Durante dois períodos trabalhou em laboratórios de investigação da Siemens (1914-191] e 1927-1958).

Principais realizações[editar | editar código-fonte]

Possivelmente, em retrospecto, importante científica mais realização Schottky foi desenvolver (em 1914), a conhecida clássica fórmula bem, agora escrito - q 2 / 16π ε 0 x, para a energia de interação entre um ponto de carga q e um apartamento em metal de superfície, quando a carga está a uma distância x da superfície. Devido ao método de sua derivação, essa interação é chamada energia de imagem "potencial". Schottky baseou seu trabalho em trabalho anterior por Lord Kelvin PE relativas à imagem de uma esfera. A imagem da PE Schottky se tornou um componente padrão em modelos simples de barreira ao movimento, M (x), vivida por um elétron em abordar um metal ou uma superfície de metal - de semicondutores interface do interior. (Esta M (x) é a quantidade que aparece quando o one-dimensional, uma partícula, equação de Schrödinger é escrita na forma

Aqui, é a constante de Planck dividida por 2π, m e é a massa do elétron). O PE da imagem é geralmente combinado com termos relacionados a uma aplicação de campo elétrico F e da altura h (na ausência de qualquer campo) da barreira. Isso leva à seguinte expressão para a dependência da energia barreira da distância x, medida a partir do eléctrico de superfície "do metal, no vácuo ou no de semicondutores:

Aqui, e é a carga elementar positiva, ε 0 é a constante elétrica ε r e é a permissividade relativa do meio segundo (= 1 para o vácuo ). No caso de uma junção semicondutor-metal, isso é chamado de barreira Schottky , no caso do vácuo interface metal, isto é às vezes chamado de -Nordheim barreira Schottky. Em muitos contextos, h tem que ser tomado igual ao local de trabalho da função φ.

Esta barreira Schottky-Nordheim (barreira SN) tem desempenhado importante papel na teorias de emissão termiônica e de emissão de elétrons de campo . Aplicando o campo faz baixar da barreira e, portanto, aumenta a emissão atual de emissão termiônica. Este é o chamado " efeito Schottky ", e o regime de emissão resultante é chamado de" emissão Schottky ".

Em 1923 Schottky sugeriu (incorretamente) que o fenômeno experimental chamado então de emissão autoelectronic e agora chamado de emissão eletrônica de campo resultaram quando a barreira foi puxado para baixo a zero. Na verdade, o efeito é devido a mecânica de tunelamento onda , como mostrado por Fowler e Nordheim em 1928. Mas a barreira SN agora se tornou o modelo para a barreira de tunelamento.

Mais tarde, no contexto de dispositivos semicondutores, foi sugerido que uma barreira semelhante deve existir a junção de um metal e um semicondutor. Essas barreiras são hoje conhecidas como barreiras Schottky, e considerações se aplicam à transferência de elétrons através deles que são análogas às considerações mais de como os elétrons são emitidos a partir de um metal em vácuo. (Basicamente, existem diversos regimes de emissão, para diferentes combinações de temperatura e campo. Os diferentes regimes são regulados por fórmulas aproximadas diferentes).

Quando o comportamento do conjunto dessas interfaces é examinada, verificou-se que eles possam agir (assimétrica), como uma forma especial de diodo eletrônico, agora chamado de diodo Schottky. Neste contexto, a junção do semicondutor-metal é conhecido como um " Schottky (rectificação) de contacto .

Na superfície da ciência eletrônica / emissão e, em teoria, dispositivos de semicondutores, formam agora um significativo e generalizado parte do fundo para esses assuntos. Ele poderia ser argumentado que - talvez porque eles estão na área de Física técnico - que não são geralmente bem conhecidos como deveriam ser.

Prêmios[editar | editar código-fonte]

Foi condecorado pela Royal Society com a Medalha Hughes em 1936, por sua descoberta do efeito Schrot (espontânea variações na corrente de alto vácuo, tubos de descarga, chamada por ele Schrot o "efeito": literalmente, o "pequeno efeito shot") em thermionic emissão e sua invenção da grade tetrode-screen e um superheterodyne método de receber sinais wireless.

Em 1964 recebeu o Werner-von-Siemens-Ring honrar seu trabalho solo, quebrando a compreensão de muitos fenômenos físicos que levaram muitos importantes aparelhos técnicos, entre eles amplificadores valvulados e semicondutores .

Pessoal[editar | editar código-fonte]

Filho do matemático Friedrich Schottky (1851-1935). Sua esposa era Isabel e tinham uma filha e dois filhos. Seu pai foi nomeado professor de matemática na Universidade de Zurique em 1882, e ele nasceu quatro anos depois. A família então se mudou para a Alemanha em 1892, onde seu pai assumiu um cargo na Universidade de Marburg.

Obras[editar | editar código-fonte]

  • Thermodynamik, Julius Springer, Berlim, Alemanha, 1929.
  • Der Physik Glühelektroden, Verlagsgesellschaft Akademische, Leipzig, 1928.

Referências

Ligações externas[editar | editar código-fonte]


Precedido por
Clinton Davisson
Medalha Hughes
1936
Sucedido por
Ernest Lawrence


Ícone de esboço Este artigo sobre um cientista é um esboço. Você pode ajudar a Wikipédia expandindo-o.